2,214 research outputs found
Asymptotically constrained and real-valued system based on Ashtekar's variables
We present a set of dynamical equations based on Ashtekar's extension of the
Einstein equation. The system forces the space-time to evolve to the manifold
that satisfies the constraint equations or the reality conditions or both as
the attractor against perturbative errors. This is an application of the idea
by Brodbeck, Frittelli, Huebner and Reula who constructed an asymptotically
stable (i.e., constrained) system for the Einstein equation, adding dissipative
forces in the extended space. The obtained systems may be useful for future
numerical studies using Ashtekar's variables.Comment: added comments, 6 pages, RevTeX, to appear in PRD Rapid Com
Constraint propagation in the family of ADM systems
The current important issue in numerical relativity is to determine which
formulation of the Einstein equations provides us with stable and accurate
simulations. Based on our previous work on "asymptotically constrained"
systems, we here present constraint propagation equations and their eigenvalues
for the Arnowitt-Deser-Misner (ADM) evolution equations with additional
constraint terms (adjusted terms) on the right hand side. We conjecture that
the system is robust against violation of constraints if the amplification
factors (eigenvalues of Fourier-component of the constraint propagation
equations) are negative or pure-imaginary. We show such a system can be
obtained by choosing multipliers of adjusted terms. Our discussion covers
Detweiler's proposal (1987) and Frittelli's analysis (1997), and we also
mention the so-called conformal-traceless ADM systems.Comment: 11 pages, RevTeX, 2 eps figure
Constructing hyperbolic systems in the Ashtekar formulation of general relativity
Hyperbolic formulations of the equations of motion are essential technique
for proving the well-posedness of the Cauchy problem of a system, and are also
helpful for implementing stable long time evolution in numerical applications.
We, here, present three kinds of hyperbolic systems in the Ashtekar formulation
of general relativity for Lorentzian vacuum spacetime. We exhibit several (I)
weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric
hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's
original equations form a weakly hyperbolic system. We discuss how gauge
conditions and reality conditions are constrained during each step toward
constructing a symmetric hyperbolic system.Comment: 15 pages, RevTeX, minor changes in Introduction. published as Int. J.
Mod. Phys. D 9 (2000) 1
Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime
In order to find a way to have a better formulation for numerical evolution
of the Einstein equations, we study the propagation equations of the
constraints based on the Arnowitt-Deser-Misner formulation. By adjusting
constraint terms in the evolution equations, we try to construct an
"asymptotically constrained system" which is expected to be robust against
violation of the constraints, and to enable a long-term stable and accurate
numerical simulation. We first provide useful expressions for analyzing
constraint propagation in a general spacetime, then apply it to Schwarzschild
spacetime. We search when and where the negative real or non-zero imaginary
eigenvalues of the homogenized constraint propagation matrix appear, and how
they depend on the choice of coordinate system and adjustments. Our analysis
includes the proposal of Detweiler (1987), which is still the best one
according to our conjecture but has a growing mode of error near the horizon.
Some examples are snapshots of a maximally sliced Schwarzschild black hole. The
predictions here may help the community to make further improvements.Comment: 23 pages, RevTeX4, many figures. Revised version. Added subtitle,
reduced figures, rephrased introduction, and a native checked. :-
Symmetric hyperbolic system in the Ashtekar formulation
We present a first-order symmetric hyperbolic system in the Ashtekar
formulation of general relativity for vacuum spacetime. We add terms from
constraint equations to the evolution equations with appropriate combinations,
which is the same technique used by Iriondo, Leguizam\'on and Reula [Phys. Rev.
Lett. 79, 4732 (1997)]. However our system is different from theirs in the
points that we primarily use Hermiticity of a characteristic matrix of the
system to characterize our system "symmetric", discuss the consistency of this
system with reality condition, and show the characteristic speeds of the
system.Comment: 4 pages, RevTeX, to appear in Phys. Rev. Lett., Comments added, refs
update
Illustrating Stability Properties of Numerical Relativity in Electrodynamics
We show that a reformulation of the ADM equations in general relativity,
which has dramatically improved the stability properties of numerical
implementations, has a direct analogue in classical electrodynamics. We
numerically integrate both the original and the revised versions of Maxwell's
equations, and show that their distinct numerical behavior reflects the
properties found in linearized general relativity. Our results shed further
light on the stability properties of general relativity, illustrate them in a
very transparent context, and may provide a useful framework for further
improvement of numerical schemes.Comment: 5 pages, 2 figures, to be published as Brief Report in Physical
Review
Constraints and Reality Conditions in the Ashtekar Formulation of General Relativity
We show how to treat the constraints and reality conditions in the
-ADM (Ashtekar) formulation of general relativity, for the case of a
vacuum spacetime with a cosmological constant. We clarify the difference
between the reality conditions on the metric and on the triad. Assuming the
triad reality condition, we find a new variable, allowing us to solve the gauge
constraint equations and the reality conditions simultaneously.Comment: LaTeX file, 12 pages, no figures; to appear in Classical and Quantum
Gravit
- …