93,519 research outputs found

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    Entanglement changing power of two-qubit unitary operations

    Full text link
    We consider a two-qubit unitary operation along with arbitrary local unitary operations acts on a two-qubit pure state, whose entanglement is C_0. We give the conditions that the final state can be maximally entangled and be non-entangled. When the final state can not be maximally entangled, we give the maximal entanglement C_max it can reach. When the final state can not be non-entangled, we give the minimal entanglement C_min it can reach. We think C_max and C_min represent the entanglement changing power of two-qubit unitary operations. According to this power we define an order of gates.Comment: 11 page

    Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength

    Full text link
    We construct a projection measurement process for the maximally entangled N-photon state (the NOON-state) with only linear optical elements and photodetectors. This measurement process will give null result for any N-photon state that is orthogonal to the NOON state. We examine the projection process in more detail for N=4 by applying it to a four-photon state from type-II parametric down-conversion. This demonstrates an orthogonal projection measurement with a null result. This null result corresponds to a dip in a generalized Hong-Ou-Mandel interferometer for four photons. We find that the depth of the dip in this arrangement can be used to distinguish a genuine entangled four-photon state from two separate pairs of photons. We next apply the NOON state projection measurement to a four-photon superposition state from two perpendicularly oriented type-I parametric down-conversion processes. A successful NOON state projection is demonstrated with the appearance of the four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape
    corecore