165,040 research outputs found
Optical Resonator Analog of a Two-Dimensional Topological Insulator
A lattice of optical ring resonators can exhibit a topological insulator
phase, with the role of spin played by the direction of propagation of light
within each ring. Unlike the system studied by Hafezi et al., topological
protection is achieved without fine-tuning the inter-resonator couplings, which
are given the same periodicity as the underlying lattice. The topological
insulator phase occurs for strong couplings, when the tight-binding method is
inapplicable. Using the transfer matrix method, we derive the bandstructure and
phase diagram, and demonstrate the existence of robust edge states. When gain
and loss are introduced, the system functions as a diode for coupled resonator
modes.Comment: 10 pages, 9 figure
Anomalous Nernst and Hall effects in magnetized platinum and palladium
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in
proximity-induced ferromagnetic palladium and platinum which is widely used in
spintronics, within the Berry phase formalism based on the relativistic band
structure calculations. We find that both the anomalous Hall ()
and Nernst () conductivities can be related to the spin Hall
conductivity () and band exchange-splitting () by
relations and
,
respectively. In particular, these relations would predict that the
in the magnetized Pt (Pd) would be positive (negative) since
the is positive (negative). Furthermore, both
and are approximately proportional to the
induced spin magnetic moment () because the is a linear
function of . Using the reported in the magnetized Pt and Pd, we
predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic
platinum and palladium would be gigantic, being up to ten times larger than,
e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be
significant.Comment: Accepted for publication in the Physical Review
- β¦