563 research outputs found
Electronic Raman scattering of Tl-2223 and the symmetry of the supercon- ducting gap
Single crystalline Tl2Ba2Ca2Cu3O10 was studied using electronic Raman
scattering. The renormalization of the scattering continuum was investigated as
a function of the scattering geometry to determine the superconducting energy
gap 2Delta(k). The A1g- and B2g-symmetry component show a linear frequency
behaviour of the scattering intensity with a peak related to the energy gap,
while the B1g-symmetry component shows a characteristic behaviour at higher
frequencies. The observed frequency dependencies are consistent with a
dx^2-y^2-wave symmetry of the gap and yield a ratio of 2Delta/k_BT_c=7.4. With
the polarization of the scattered and incident light either parallel or
perpendicular to the CuO2-planes a strong anisotropy due to the layered
structure was detected, which indicates an almost 2 dimensional behaviour of
this system.Comment: 2 pages, Postscript-file including 2 figures. Accepted for
publication in the Proceedings of the M^2SHTSC IV Conference, Grenoble
(France), 5-9 July 1994. Proceedings to be published in Physica C. Contact
address: [email protected]
Experimental demonstration of gridless spectrum and time optical switching
An experimental demonstration of gridless spectrum and time switching is presented. We propose and demonstrate a bit-rate and modulation-format independent optical cross-connect architecture, based on gridless spectrum selective switch, 20-ms 3D-MEMS and 10-ns PLZT optical switches, that supports arbitrary spectrum allocation and transparent time multiplexing. The architecture is implemented in a four-node field-fiber-linked testbed to transport continuous RZ and NRZ data channels at 12.5, 42.7 and 170.8 Gb/s, and selectively groom sub-wavelength RZ channels at 42.7 Gb/s. We also showed that the architecture is dynamic and can be reconfigured to meet the routing requirements of the network traffic. Results show error-free operation with an end-to-end power penalty between 0.8 dB and 5 dB for all continuous and sub-wavelength channels
Anisotropic thermal expansion and magnetostriction of YNiBC single crystals
We present results of anisotropic thermal expansion and low temperature
magnetostriction measurements on YNiBC single crystals grown by high
temperature flux and floating zone techniques. Quantum oscillations of
magnetostriction were observed at low temperatures for starting at
fields significantly below (). Large irreversible,
longitudinal magnetostriction was seen in both, in-plane and along the c-axis,
directions of the applied magnetic field in the intermediate superconducting
state. Anisotropic uniaxial pressure dependencies of were evaluated using
results of zero field, thermal expansion measurements
Torque magnetometry study of metamagnetic transitions in single-crystal HoNi2B2C at T\approx 1.9 K
Metamagnetic transitions in single-crystal rare-earth nickel borocarbide
HoNiBC have been studied at T\approx 1.9 K with a Quantum Design torque
magnetometer. This compound is highly anisotropic with a variety of
metamagnetic states at low temperature which includes antiferromagnetic,
ferrimagnetic, non-collinear and ferromagnetic-like (saturated paramagnet)
states. The critical fields of the transitions depend crucially on the angle
between applied field and the easy axis [110]. Measurements of torque
along the c-axis have been made while changing the angular direction of the
magnetic field (parallel to basal tetragonal -planes) and with changing
field at fixed angle over a wide angular range. Two new phase boundaries in the
region of the non-collinear phase have been observed, and the direction of the
magnetization in this phase has been precisely determined. At low field the
antiferromagnetic phase is observed to be multidomain. In the angular range
very close to the hard axis [100] (, where is the angle between field and the hard axis) the
magnetic behavior is found to be ``frustrated'' with a mixture of phases with
different directions of the magnetization.Comment: submitted to Phys. Rev. B, 12 pages, 12 figure
Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys
The factors determining corrosion are reviewed in this paper, with an emphasis on iron tolerance limit and the production of high-purity castings. To understand the iron impurity tolerance limit, magnesium phase diagrams were calculated using the Pandat software package. Calculated phase diagrams can explain the iron tolerance limit and the production of high-purity castings by means of control of melt conditions; this is significant for the production of quality castings from recycled magnesium. Based on the new insight, the influence of the microstructure on corrosion of magnesium alloys is reviewed
Digital signal processing based on inverse scattering transform
Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal
Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications
We report successful fabrication of low-loss SOI nano-waveguides with integrated PIN diode structures. The entire fabrication process is done on a 200 mm BiCMOS toolset using front-end-of-line (FEOL) and back-end-of-line (BEOL) processes and does not show any undesirable influence upon the photonic performance. Such a waveguide technology forms an attractive platform for a wide range of nonlinear applications due to efficient free carrier removal as well as use of standard substrates and processing technology. Nonlinear experiments were conducted to investigate the potential of the introduced technology. The performance of the designed waveguides can be used as a benchmark for future development of proposed platform for integrated silicon photonics and electronics circuits
Point-contact spectroscopy of the antiferromagnetic superconductor HoNi2B2C in the normal and superconducting state
Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF)
(T_N=5.2K) HoNi2B2C single crystals in the normal and two different
superconducting (SC) states (T_c=8.5K and T_c^*=5.6K<T_c, with 2\Delta/kT_c^*=3.9. The strong coupling
Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N,
coexisting with the commensurate AF structure, suggests a sizable value of the
EPI constant \lambda_s=0.93. We also provide strong support for the recently
proposed by us ''Fermi surface (FS) separation'' scenario for the coexistence
of magnetism and superconductivity in magnetic borocarbides, namely, that the
superconductivity in the commensurate AF phase survives at a special (nearly
isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC
features in the PC characteristics are strongly suppressed pointing to a
specific weakened SC state between T_c* and T_c.Comment: 11 pages, 8 figs, to be published in PRB, Vol.75, Iss.2
- …