563 research outputs found

    Electronic Raman scattering of Tl-2223 and the symmetry of the supercon- ducting gap

    Full text link
    Single crystalline Tl2Ba2Ca2Cu3O10 was studied using electronic Raman scattering. The renormalization of the scattering continuum was investigated as a function of the scattering geometry to determine the superconducting energy gap 2Delta(k). The A1g- and B2g-symmetry component show a linear frequency behaviour of the scattering intensity with a peak related to the energy gap, while the B1g-symmetry component shows a characteristic behaviour at higher frequencies. The observed frequency dependencies are consistent with a dx^2-y^2-wave symmetry of the gap and yield a ratio of 2Delta/k_BT_c=7.4. With the polarization of the scattered and incident light either parallel or perpendicular to the CuO2-planes a strong anisotropy due to the layered structure was detected, which indicates an almost 2 dimensional behaviour of this system.Comment: 2 pages, Postscript-file including 2 figures. Accepted for publication in the Proceedings of the M^2SHTSC IV Conference, Grenoble (France), 5-9 July 1994. Proceedings to be published in Physica C. Contact address: [email protected]

    Experimental demonstration of gridless spectrum and time optical switching

    Get PDF
    An experimental demonstration of gridless spectrum and time switching is presented. We propose and demonstrate a bit-rate and modulation-format independent optical cross-connect architecture, based on gridless spectrum selective switch, 20-ms 3D-MEMS and 10-ns PLZT optical switches, that supports arbitrary spectrum allocation and transparent time multiplexing. The architecture is implemented in a four-node field-fiber-linked testbed to transport continuous RZ and NRZ data channels at 12.5, 42.7 and 170.8 Gb/s, and selectively groom sub-wavelength RZ channels at 42.7 Gb/s. We also showed that the architecture is dynamic and can be reconfigured to meet the routing requirements of the network traffic. Results show error-free operation with an end-to-end power penalty between 0.8 dB and 5 dB for all continuous and sub-wavelength channels

    Anisotropic thermal expansion and magnetostriction of YNi2_2B2_2C single crystals

    Full text link
    We present results of anisotropic thermal expansion and low temperature magnetostriction measurements on YNi2_2B2_2C single crystals grown by high temperature flux and floating zone techniques. Quantum oscillations of magnetostriction were observed at low temperatures for HcH \| c starting at fields significantly below Hc2H_{c2} (H<0.7Hc2H < 0.7 H_{c2}). Large irreversible, longitudinal magnetostriction was seen in both, in-plane and along the c-axis, directions of the applied magnetic field in the intermediate superconducting state. Anisotropic uniaxial pressure dependencies of TcT_c were evaluated using results of zero field, thermal expansion measurements

    Torque magnetometry study of metamagnetic transitions in single-crystal HoNi2B2C at T\approx 1.9 K

    Full text link
    Metamagnetic transitions in single-crystal rare-earth nickel borocarbide HoNi2_2B2_2C have been studied at T\approx 1.9 K with a Quantum Design torque magnetometer. This compound is highly anisotropic with a variety of metamagnetic states at low temperature which includes antiferromagnetic, ferrimagnetic, non-collinear and ferromagnetic-like (saturated paramagnet) states. The critical fields of the transitions depend crucially on the angle θ\theta between applied field and the easy axis [110]. Measurements of torque along the c-axis have been made while changing the angular direction of the magnetic field (parallel to basal tetragonal abab-planes) and with changing field at fixed angle over a wide angular range. Two new phase boundaries in the region of the non-collinear phase have been observed, and the direction of the magnetization in this phase has been precisely determined. At low field the antiferromagnetic phase is observed to be multidomain. In the angular range very close to the hard axis [100] (6ϕ6-6^{\circ} \lesssim\phi \lesssim 6^{\circ}, where ϕ\phi is the angle between field and the hard axis) the magnetic behavior is found to be ``frustrated'' with a mixture of phases with different directions of the magnetization.Comment: submitted to Phys. Rev. B, 12 pages, 12 figure

    Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys

    Get PDF
    The factors determining corrosion are reviewed in this paper, with an emphasis on iron tolerance limit and the production of high-purity castings. To understand the iron impurity tolerance limit, magnesium phase diagrams were calculated using the Pandat software package. Calculated phase diagrams can explain the iron tolerance limit and the production of high-purity castings by means of control of melt conditions; this is significant for the production of quality castings from recycled magnesium. Based on the new insight, the influence of the microstructure on corrosion of magnesium alloys is reviewed

    Digital signal processing based on inverse scattering transform

    Get PDF
    Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal

    Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications

    Get PDF
    We report successful fabrication of low-loss SOI nano-waveguides with integrated PIN diode structures. The entire fabrication process is done on a 200 mm BiCMOS toolset using front-end-of-line (FEOL) and back-end-of-line (BEOL) processes and does not show any undesirable influence upon the photonic performance. Such a waveguide technology forms an attractive platform for a wide range of nonlinear applications due to efficient free carrier removal as well as use of standard substrates and processing technology. Nonlinear experiments were conducted to investigate the potential of the introduced technology. The performance of the designed waveguides can be used as a benchmark for future development of proposed platform for integrated silicon photonics and electronics circuits

    Point-contact spectroscopy of the antiferromagnetic superconductor HoNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and Tc=5.6K)arereported.ThePCstudyoftheelectronboson(phonon)interaction(EB(P)I)spectralfunctionrevealspronouncedphononmaximaat16,22and34meV.Forthefirsttimethehighenergymaximaatabout50meVand100meVareresolved.Additionally,anadmixtureofacrystallineelectricfield(CEF)excitationswithamaximumnear10meVandamagneticpeaknear3meVareobserved.Thecontributionofthe10meVpeakinPCEPIconstantλPCisevaluatedas2030contributionofthehighenergymodesat50and100meVamountsabout10eachmaxima,sothesuperconductivitymightbeaffectedbyCEFexcitations.TheSCgapinHoNi2B2CexhibitsastandardsinglebandBCSlikedependence,butvanishesatT_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant \lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at T_c^*=5.6K<T_c, with 2\Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant \lambda_s=0.93. We also provide strong support for the recently proposed by us ''Fermi surface (FS) separation'' scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.Comment: 11 pages, 8 figs, to be published in PRB, Vol.75, Iss.2
    corecore