971 research outputs found

    Blandford-Znajek process as a gamma ray burst central engine

    Get PDF
    We investigate the possibility that gamma-ray bursts are powered by a central engine consisting of a black hole with an external magnetic field supported by a surrounding disk or torus. The rotational energy of the black hole can be extracted electromagnetically as a Poynting flux, a mechanism proposed by Blandford and Znajek(1977). Recently observed magnetars indicate that some compact objects have very high magnetic fields, up to 101510^{15} G, which is required to extract the energy within the duration of a GRB, i.e., in 1000 s or less. We demonstrate also that the Poynting flux need not be substantially dominated by the disk.Comment: 7 pages, no figure, paspconf.sty, to appear in Proceedings " Gamma Ray Bursts: The First Three Minutes", Gr\"aft{\aa}vallen, Sweden, Feb. 6 - 11, 199

    Identifying Gamma-Ray Burst Remnants in Nearby Galaxies

    Get PDF
    We study the spectral signatures arising from cooling and recombination of an interstellar medium whose equilibrium state has been altered over \sim 100 pc by the radiation of a Gamma-Ray Burst (GRB) and its afterglow. We identify signatures in the line diagnostics which are indicative of a photo-ionized GRB remnant which is \la 5 x 10^4 years old . We estimate that at least a few such remnants should be detectable in the Virgo cluster of galaxies. If the gamma-ray emission from GRBs is beamed to a fraction f_b of their sky, then the expected number of Virgo remnants is larger by a factor of f_b^{-1}. Virgo remnants can be resolved with arcsecond imaging, and are likely to be center-filled using narrow-band filters of high ionization lines (such as [O III] \lambda5007 or He II \lambda4686), and limb-brightened for low-ionization lines (such as [S II] \lambda6717). The non-relativistic blast wave might be visible separately, since it does not reach the outer edge of these young photo-ionized remnants. The remnants should show evidence for ionization cones if the prompt or afterglow UV emission from GRBs is beamed.Comment: 21 pages, 10 figures, submitted to Ap

    On the formation of low-mass black holes in massive binary stars

    Get PDF
    Recently (Brown \& Bethe 1994) it was suggested that most stars with main sequence mass in the range of about 18−30M⊙18 - 30 M_{\odot} explode, returning matter to the Galaxy, and then go into low-mass (≄1.5M⊙\geq 1.5 M_{\odot}) black holes. Even more massive main-sequence stars would, presumably, chiefly g o into high-mass (∌10M⊙\sim 10 M_{\odot}) black holes. The Brown-Bethe estimates gave approximately 5×1085 \times {10}^{8} low-mass black holes in the Galaxy. A pressing question, which we attempt to answer here, is why, with the possible exception of the compact objects in SN1987A and 4U\,1700--37, none of these have been seen. We address this question in three parts. Firstly, black holes are generally ``seen'' only in binaries, by the accretion of matter from a companion star. High mass black holes are capable of accreting more matter than low-mass black holes, so there is a selection effect favoring them. This, in itself, would not be sufficient to show why low-mass black holes have not been seen, since neutron stars (of nearly the same mass) are seen in abundance. Secondly, and this is our main point, the primary star in a binary ---the first star to evolve--- loses its hydrogen envelope by transfer of matter to the secondary and loss into space, and the resulting ``naked'' helium star evolves differently than a helium core, which is at least initially covered by the hydrogen envelope in a massive main-sequence star. We show that primary stars in binaries can end up as neutron stars even if their initial mass substantially exceeds the mass limit for neutron star formation from single stars (∌18M⊙\sim 18 M_{\odot}). An example is 4U\,1223--62, in which we suggest that the initial primary mass exceeded 35M⊙35 M_{\odot}, yet X-ray pulsationsComment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Radiative Efficiencies of Continuously Powered Blast Waves

    Full text link
    We use general arguments to show that a continuously powered radiative blast wave can behave self similarly if the energy injection and radiation mechanisms are self similar. In that case, the power-law indices of the blast wave evolution are set by only one of the two constituent physical mechanisms. If the luminosity of the energy source drops fast enough, the radiation mechanisms set the power-law indices, otherwise, they are set by the behavior of the energy source itself. We obtain self similar solutions for the Newtonian and the ultra-relativistic limits. Both limits behave self similarly if we assume that the central source supplies energy in the form of a hot wind, and that the radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari (1998). We calculate the instantaneous radiative efficiencies for both limits and find that a relativistic blast wave has a higher efficiency than a Newtonian one. The instantaneous radiative efficiency depends strongly on the hydrodynamics and cannot be approximated by an estimate of local microscopic radiative efficiencies, since a fraction of the injected energy is deposited in shocked matter. These solutions can be used to calculate Gamma Ray Bursts afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table

    Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields

    Full text link
    We generally analyze prompt high-energy emission above a few hundreds of GeV due to synchrotron self-Compton scattering in internal shocks. However, such photons cannot be detected because they may collide with cosmic infrared background photons, leading to electron/positron pair production. Inverse-Compton scattering of the resulting electron/positron pairs off cosmic microwave background photons will produce delayed MeV-GeV emission, which may be much stronger than a typical high-energy afterglow in the external shock model. We expand on the Cheng & Cheng model by deriving the emission spectrum and duration in the standard fireball shock model. A typical duration of the emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum is nu^{-(p+6)/4}, where p is the index of the electron energy distribution behind internal shocks. This is slightly harder than the synchrotron photon spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon spectrum is dependent on the spectral energy distribution of the cosmic infrared background radiation. Therefore, future observations on such delayed MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large Area Space Telescope (GLAST) would provide a probe of the cosmic infrared background radiation.Comment: 5 pages, accepted for publication in Ap

    A Theory of Gamma-Ray Bursts

    Get PDF
    We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients and gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova Scorpii 1994, explicitly support this connection: its high space velocity indicates that substantial mass was ejected in the formation of the black hole, and the overabundance of alpha-nuclei, especially sulphur, indicates that the explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom

    The Afterglow of GRB 990123 and a Dense Medium

    Get PDF
    Recent observations show that the temporal decay of the R-band afterglow from GRB 990123 steepened about 2.5 days after the burst. We here propose a possible explanation for such a steepening: a shock expanding in a dense medium has undergone the transition from a relativistic phase to a nonrelativistic phase. We find that this model is consistent with the observations if the medium density is about 3×106cm−33\times 10^6 {\rm cm}^{-3}. By fitting our model to the observed optical and X-ray afterglow quantitatively, we further infer the electron and magnetic energy fractions of the shocked medium and find these two parameters are about 0.1 and 2×10−82\times 10^{-8} respectively. The former parameter is near the equipartition value while the latter is about six orders of magnitude smaller than inferred from the GRB 970508 afterglow. We also discuss possibilities that the dense medium can be produced.Comment: 12 pages, LaTeX, published in ApJ Letter
    • 

    corecore