971 research outputs found
Blandford-Znajek process as a gamma ray burst central engine
We investigate the possibility that gamma-ray bursts are powered by a central
engine consisting of a black hole with an external magnetic field supported by
a surrounding disk or torus. The rotational energy of the black hole can be
extracted electromagnetically as a Poynting flux, a mechanism proposed by
Blandford and Znajek(1977). Recently observed magnetars indicate that some
compact objects have very high magnetic fields, up to G, which is
required to extract the energy within the duration of a GRB, i.e., in 1000 s or
less. We demonstrate also that the Poynting flux need not be substantially
dominated by the disk.Comment: 7 pages, no figure, paspconf.sty, to appear in Proceedings " Gamma
Ray Bursts: The First Three Minutes", Gr\"aft{\aa}vallen, Sweden, Feb. 6 -
11, 199
Identifying Gamma-Ray Burst Remnants in Nearby Galaxies
We study the spectral signatures arising from cooling and recombination of an
interstellar medium whose equilibrium state has been altered over \sim 100 pc
by the radiation of a Gamma-Ray Burst (GRB) and its afterglow. We identify
signatures in the line diagnostics which are indicative of a photo-ionized GRB
remnant which is \la 5 x 10^4 years old . We estimate that at least a few such
remnants should be detectable in the Virgo cluster of galaxies. If the
gamma-ray emission from GRBs is beamed to a fraction f_b of their sky, then the
expected number of Virgo remnants is larger by a factor of f_b^{-1}. Virgo
remnants can be resolved with arcsecond imaging, and are likely to be
center-filled using narrow-band filters of high ionization lines (such as [O
III] \lambda5007 or He II \lambda4686), and limb-brightened for low-ionization
lines (such as [S II] \lambda6717). The non-relativistic blast wave might be
visible separately, since it does not reach the outer edge of these young
photo-ionized remnants. The remnants should show evidence for ionization cones
if the prompt or afterglow UV emission from GRBs is beamed.Comment: 21 pages, 10 figures, submitted to Ap
On the formation of low-mass black holes in massive binary stars
Recently (Brown \& Bethe 1994) it was suggested that most stars with main
sequence mass in the range of about explode, returning
matter to the Galaxy, and then go into low-mass () black
holes. Even more massive main-sequence stars would, presumably, chiefly g o
into high-mass () black holes. The Brown-Bethe estimates
gave approximately low-mass black holes in the Galaxy. A
pressing question, which we attempt to answer here, is why, with the possible
exception of the compact objects in SN1987A and 4U\,1700--37, none of these
have been seen.
We address this question in three parts. Firstly, black holes are generally
``seen'' only in binaries, by the accretion of matter from a companion star.
High mass black holes are capable of accreting more matter than low-mass black
holes, so there is a selection effect favoring them. This, in itself, would not
be sufficient to show why low-mass black holes have not been seen, since
neutron stars (of nearly the same mass) are seen in abundance.
Secondly, and this is our main point, the primary star in a binary ---the
first star to evolve--- loses its hydrogen envelope by transfer of matter to
the secondary and loss into space, and the resulting ``naked'' helium star
evolves differently than a helium core, which is at least initially covered by
the hydrogen envelope in a massive main-sequence star. We show that primary
stars in binaries can end up as neutron stars even if their initial mass
substantially exceeds the mass limit for neutron star formation from single
stars (). An example is 4U\,1223--62, in which we suggest
that the initial primary mass exceeded , yet X-ray pulsationsComment: uuencoded compressed postscript. The preprint is also available at
http://www.ast.cam.ac.uk/preprint/PrePrint.htm
Radiative Efficiencies of Continuously Powered Blast Waves
We use general arguments to show that a continuously powered radiative blast
wave can behave self similarly if the energy injection and radiation mechanisms
are self similar. In that case, the power-law indices of the blast wave
evolution are set by only one of the two constituent physical mechanisms. If
the luminosity of the energy source drops fast enough, the radiation mechanisms
set the power-law indices, otherwise, they are set by the behavior of the
energy source itself. We obtain self similar solutions for the Newtonian and
the ultra-relativistic limits. Both limits behave self similarly if we assume
that the central source supplies energy in the form of a hot wind, and that the
radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari
(1998). We calculate the instantaneous radiative efficiencies for both limits
and find that a relativistic blast wave has a higher efficiency than a
Newtonian one. The instantaneous radiative efficiency depends strongly on the
hydrodynamics and cannot be approximated by an estimate of local microscopic
radiative efficiencies, since a fraction of the injected energy is deposited in
shocked matter. These solutions can be used to calculate Gamma Ray Bursts
afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table
Spectrum and Duration of Delayed MeV-GeV Emission of Gamma-Ray Bursts in Cosmic Background Radiation Fields
We generally analyze prompt high-energy emission above a few hundreds of GeV
due to synchrotron self-Compton scattering in internal shocks. However, such
photons cannot be detected because they may collide with cosmic infrared
background photons, leading to electron/positron pair production.
Inverse-Compton scattering of the resulting electron/positron pairs off cosmic
microwave background photons will produce delayed MeV-GeV emission, which may
be much stronger than a typical high-energy afterglow in the external shock
model. We expand on the Cheng & Cheng model by deriving the emission spectrum
and duration in the standard fireball shock model. A typical duration of the
emission is ~ 10^3 seconds, and the time-integrated scattered photon spectrum
is nu^{-(p+6)/4}, where p is the index of the electron energy distribution
behind internal shocks. This is slightly harder than the synchrotron photon
spectrum, nu^{-(p+2)/2}. The lower energy property of the scattered photon
spectrum is dependent on the spectral energy distribution of the cosmic
infrared background radiation. Therefore, future observations on such delayed
MeV-GeV emission and the higher-energy spectral cutoff by the Gamma-Ray Large
Area Space Telescope (GLAST) would provide a probe of the cosmic infrared
background radiation.Comment: 5 pages, accepted for publication in Ap
A Theory of Gamma-Ray Bursts
We present a specific scenario for the link between GRB and hypernovae, based
on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism
requires a high angular momentum in the progenitor object. The observed
association of gamma-ray bursts with type Ibc supernovae leads us to consider
massive helium stars that form black holes at the end of their lives as
progenitors. We combine the numerical work of MacFadyen & Woosley with analytic
calculations, to show that about 1E53 erg each are available to drive the fast
GRB ejecta and the supernova. The GRB ejecta are driven by the power output
through the open field lines, whereas the supernova is powered by closed filed
lines and jet shocks. We also present a much simplified approximate derivation
of these energetics.
Helium stars that leave massive black-hole remnants in special ways, namely
via soft X-ray transients or very massive WNL stars. Since binaries naturally
have high angular momentum, we propose a link between black-hole transients and
gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova
Scorpii 1994, explicitly support this connection: its high space velocity
indicates that substantial mass was ejected in the formation of the black hole,
and the overabundance of alpha-nuclei, especially sulphur, indicates that the
explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom
The Afterglow of GRB 990123 and a Dense Medium
Recent observations show that the temporal decay of the R-band afterglow from
GRB 990123 steepened about 2.5 days after the burst. We here propose a possible
explanation for such a steepening: a shock expanding in a dense medium has
undergone the transition from a relativistic phase to a nonrelativistic phase.
We find that this model is consistent with the observations if the medium
density is about . By fitting our model to the
observed optical and X-ray afterglow quantitatively, we further infer the
electron and magnetic energy fractions of the shocked medium and find these two
parameters are about 0.1 and respectively. The former
parameter is near the equipartition value while the latter is about six orders
of magnitude smaller than inferred from the GRB 970508 afterglow. We also
discuss possibilities that the dense medium can be produced.Comment: 12 pages, LaTeX, published in ApJ Letter
- âŠ