25 research outputs found

    Applications of high-order harmonics

    No full text

    Localization of the rat immunoglobulin lambda light chain locus to chromosome 11.

    No full text
    Previous experiments using rat/mouse somatic cell hybrids have localized the rat c-myc gene to chromosome 7 (Sümegi et al. 1983), the rat immunoglobulin kappa locus to chromosome 4 (Perlmann et al. 1985), and the rat immunoglobulin heavy chain locus to chromosome 6 (Pear et al. 1986). Using a similar approach, we now report the localization of the rat immunoglobulin lambda light chain locus to chromosome 11.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Localization of the rat immunoglobulin heavy chain locus to chromosome 6.

    No full text
    We have previously used rat/mouse somatic cell hybrids to localize the rat c-myc gene to chromosome 7 (Sümegi et al. 1983) and the rat immunoglobulin kappa locus to chromosome 4 (Perlmann et al. 1985). We now report that by utilizing rat/mouse somatic cell hybrids, we have localized the rat immunoglobulin heavy chain locus to chromosome 6.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nano and micro structured targets to modulate the spatial profile of laser driven proton beams

    No full text
    Nano and micro structured thin (μ m-scale) foils were designed, fabricated and irradiated with the high intensity laser system operating at LLC (Lund Laser Centre, Sweden) in order to systematically study and improve the main proton beam parameters. Nano-spheres deposited on the front (laser irradiated) surface of a flat Mylar foil enabled a small enhancement of the maximum energy and number of the accelerated protons. Nano-spheres on the rear side allowed to modify the proton beam spatial profile. In particular, with nanospheres deposited on the rear of the target, the proton beam spatial homogeneity was clearly enhanced. Silicon nitride thin foils having micro grating structures (with different step dimensions) on the rear surface were also used as targets to influence the divergence of the proton beam and drastically change its shape through a sort of stretching effect. The target fabrication process used for the different target types is described, and representative experimental results are shown and discussed along with supporting 3D particle-in-cell simulations. \ua9 2017 IOP Publishing Ltd and Sissa Medialab srl
    corecore