7,819 research outputs found
Weak Hopf algebras corresponding to Cartan matrices
We replace the group of group-like elements of the quantized enveloping
algebra of a finite dimensional semisimple Lie algebra
by some regular monoid and get the weak Hopf algebra
. It is a new subclass of weak Hopf algebras
but not Hopf algebras. Then we devote to constructing a basis of
and determine the group of weak Hopf algebra
automorphisms of when is not a root of
unity.Comment: 21 page
Regional agriculture surveys using ERTS-1 data
The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock
Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films
We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and
studied their electronic structures as a function of lattice-strains. Under
tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are
expected to result in increased (decreased) electronic bandwidths. However, we
have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are
shifted to higher (lower) energies under tensile (compressive) strains,
indicating that the electronic-correlation energy is also affected by in-plane
lattice-strains. The effective tuning of electronic structures under
lattice-modification provides an important insight into the physics driven by
the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl
Studying the Pulsation of Mira Variables in the Ultraviolet
We present results from an empirical study of the Mg II h & k emission lines
of selected Mira variable stars, using spectra from the International
Ultraviolet Explorer (IUE). The stars all exhibit similar Mg II behavior during
the course of their pulsation cycles. The Mg II flux always peaks after optical
maximum near pulsation phase 0.2-0.5, although the Mg II flux can vary greatly
from one cycle to the next. The lines are highly blueshifted, with the
magnitude of the blueshift decreasing with phase. The widths of the Mg II lines
are also phase-dependent, decreasing from about 70 km/s to 40 km/s between
phase 0.2 and 0.6. We also study other UV emission lines apparent in the IUE
spectra, most of them Fe II lines. These lines are much narrower and not nearly
as blueshifted as the Mg II lines. They exhibit the same phase-dependent flux
behavior as Mg II, but they do not show similar velocity or width variations.Comment: 26 pages, 12 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty;
to appear in Ap
Origin of electron cyclotron maser-induced radio emissions at ultra-cool dwarfs: magnetosphere-ionosphere coupling currents
A number of ultra-cool dwarfs emit circularly polarised radio waves generated
by the electron cyclotron maser instability. In the solar system such radio is
emitted from regions of strong auroral magnetic field-aligned currents. We thus
apply ideas developed for Jupiter's magnetosphere, being a well-studied
rotationally-dominated analogue in our solar system, to the case of
fast-rotating UCDs. We explain the properties of the radio emission from UCDs
by showing that it would arise from the electric currents resulting from an
angular velocity shear in the fast-rotating magnetic field and plasma, i.e. by
an extremely powerful analogue of the process which causes Jupiter's auroras.
Such a velocity gradient indicates that these bodies interact significantly
with their space environment, resulting in intense auroral emissions. These
results strongly suggest that auroras occur on bodies outside our solar system.Comment: Accepted for publication in the Astrophysical Journa
Pancreatic β Cell Dedifferentiation in Diabetes and Redifferentiation following Insulin Therapy
SummaryDiabetes is characterized by “glucotoxic” loss of pancreatic β cell function and insulin content, but underlying mechanisms remain unclear. A mouse model of insulin-secretory deficiency induced by β cell inexcitability (KATP gain of function) demonstrates development of diabetes and reiterates the features of human neonatal diabetes. In the diabetic state, β cells lose their mature identity and dedifferentiate to neurogenin3-positive and insulin-negative cells. Lineage-tracing experiments show that dedifferentiated cells can subsequently redifferentiate to mature neurogenin3-negative, insulin-positive β cells after lowering of blood glucose by insulin therapy. We demonstrate here that β cell dedifferentiation, rather than apoptosis, is the main mechanism of loss of insulin-positive cells, and redifferentiation accounts for restoration of insulin content and antidiabetic drug responsivity in these animals. These results may help explain gradual decrease in β cell mass in long-standing diabetes and recovery of β cell function and drug responsivity in type 2 diabetic patients following insulin therapy, and they suggest an approach to rescuing “exhausted” β cells in diabetes
Hamiltonian type Lie bialgebras
We first prove that, for any generalized Hamiltonian type Lie algebra ,
the first cohomology group is trivial. We then show that
all Lie bialgebra structures on are triangular.Comment: LaTeX, 16 page
- …