961 research outputs found

    On the O II ground configuration energy levels

    Full text link
    The most accurate way to measure the energy levels for the O II 2p^3 ground configuration has been from the forbidden lines in planetary nebulae. We present an analysis of modern planetary nebula data that nicely constrain the splitting within the ^2D term and the separation of this term from the ground ^4S_{3/2} level. We extend this method to H II regions using high-resolution spectroscopy of the Orion nebula, covering all six visible transitions within the ground configuration. These data confirm the splitting of the ^2D term while additionally constraining the splitting of the ^2P term. The energies of the ^2P and ^2D terms relative to the ground (^4S) term are constrained by requiring that all six lines give the same radial velocity, consistent with independent limits placed on the motion of the O+ gas and the planetary nebula data.Comment: 20 pages, 3 figures. To be published in Ap

    Human CD57(+ )germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination

    Get PDF
    BACKGROUND: The function of CD57(+ )CD4(+ )T cells, constituting a major subset of germinal center T (GC-Th) cells in human lymphoid tissues, has been unclear. There have been contradictory reports regarding the B cell helping function of CD57(+ )GC-Th cells in production of immunoglobulin (Ig). Furthermore, the cytokine and co-stimulation requirement for their helper activity remains largely unknown. To clarify and gain more insight into their function in helping B cells, we systematically investigated the capacity of human tonsil CD57(+ )GC-Th cells in inducing B cell Ig synthesis. RESULTS: We demonstrated that CD57(+ )GC-Th cells are highly efficient in helping B cell production of all four subsets of Ig (IgM, IgG, IgA and IgE) compared to other T-helper cells located in germinal centers or interfollicular areas. CD57(+ )GC-Th cells were particularly more efficient than other T cells in helping GC-B cells but not naïve B cells. CD57(+ )GC-Th cells induced the expression of activation-induced cytosine deaminase (AID) and class switch recombination in developing B cells. IgG1-3 and IgA1 were the major Ig isotypes induced by CD57(+ )GC-Th cells. CD40L, but not IL-4, IL-10 and IFN-γ, was critical in CD57(+ )GC-Th cell-driven B cell production of Ig. However, IL-10, when added exogenously, significantly enhanced the helper activity of CD57(+ )GC-Th cells, while TGF-β1 completely and IFN-γ partially suppressed the CD57(+ )GC-Th cell-driven Ig production. CONCLUSIONS: CD57(+)CD4(+ )T cells in the germinal centers of human lymphoid tissues are the major T helper cell subset for GC-B cells in Ig synthesis. Their helper activity is consistent with their capacity to induce AID and class switch recombination, and can be regulated by CD40L, IL-4, IL-10 and TGF-β

    Diffusive Capture Process on Complex Networks

    Full text link
    We study the dynamical properties of a diffusing lamb captured by a diffusing lion on the complex networks with various sizes of NN. We find that the life time ofalambscalesasN of a lamb scales as \sim N and the survival probability S(N,t)S(N\to \infty,t) becomes finite on scale-free networks with degree exponent γ>3\gamma>3. However, S(N,t)S(N,t) for γ<3\gamma<3 has a long-living tail on tree-structured scale-free networks and decays exponentially on looped scale-free networks. It suggests that the second moment of degree distribution istherelevantfactorforthedynamicalpropertiesindiffusivecaptureprocess.Wenumericallyfindthatthenormalizednumberofcaptureeventsatanodewithdegree is the relevant factor for the dynamical properties in diffusive capture process. We numerically find that the normalized number of capture events at a node with degree k,, n(k),decreasesas, decreases as n(k)\sim k^{-\sigma}.When. When \gamma<3,, n(k)stillincreasesanomalouslyfor still increases anomalously for k\approx k_{max}.Weanalyticallyshowthat. We analytically show that n(k)satisfiestherelation satisfies the relation n(k)\sim k^2P(k)andthetotalnumberofcaptureevents and the total number of capture events N_{tot}isproportionalto is proportional to , which causes the γ\gamma dependent behavior of S(N,t)S(N,t) and $.Comment: 9 pages, 6 figure

    Non-perturbative approach for the time-dependent symmetry breaking

    Full text link
    We present a variational method which uses a quartic exponential function as a trial wave-function to describe time-dependent quantum mechanical systems. We introduce a new physical variable yy which is appropriate to describe the shape of wave-packet, and calculate the effective action as a function of both the dispersion \sqrt{} and yy. The effective potential successfully describes the transition of the system from the false vacuum to the true vacuum. The present method well describes the long time evolution of the wave-function of the system after the symmetry breaking, which is shown in comparison with the direct numerical computations of wave-function.Comment: 8 pages, 3 figure

    Site-specific immobilization of microbes using carbon nanotubes and dielectrophoretic force for microfluidic applications

    Get PDF
    We developed a microbial immobilization method for successful applications in microfluidic devices. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. Because this film has a suspended and porous structure, it has a larger reaction area and higher reactant transfer efficiency than film attached to the substrate surface. The cell density of film was easily controlled by varying the cell concentration of the suspension and varying the electric field. The film showed excellent stability of enzyme activity, as demonstrated by measuring continuous reaction and long-term storage times using recombinant Escherichia coli that expressed organophosphorus hydrolase.X1133sciescopu

    Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions

    Get PDF
    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX, No Figure

    Remarks on Renormalization of Black Hole Entropy

    Full text link
    We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    An Optical Source Catalog of the North Ecliptic Pole Region

    Full text link
    We present a five (u*,g',r',i',z') band optical photometry catalog of the sources in the North Ecliptic Pole (NEP) region based on deep observations made with MegaCam at CFHT. The source catalog covers about 2 square degree area centered at the NEP and reaches depths of about 26 mag for u*, g', r' bands, about 25 mag for i' band, and about 24 mag for z' band (4 sigma detection over an 1 arcsec aperture). The total number of cataloged sources brighter than r'= 23 mag is about 56,000 including both point sources and extended sources. From the investigation of photometric properties using the color-magnitude diagrams and color-color diagrams, we have found that the colors of extended sources are mostly (u*-r') 0.5. This can be used to separate the extended sources from the point sources reliably, even for the faint source domain where typical morphological classification schemes hardly work efficiently. We have derived an empirical color-redshift relation of the red sequence galaxies using the Sloan Digital Sky Survey data. By applying this relation to our photometry catalog and searching for any spatial overdensities, we have found two galaxy clusters and one nearby galaxy group.Comment: 34 pages, 15 figures, 2 tables. Accepted for publication in ApJS. The pdf file with high resolution figures can be downloaded from http://astro.snu.ac.kr/~nhwang/index.files/nep.htm

    Recombination Line vs. Forbidden Line Abundances in Planetary Nebulae

    Full text link
    Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Delta(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex up to 1.4 dex. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Delta(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness. An inverse correlation of Delta(O+2) with nebular density is also seen. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].Comment: 48 pages, 14 figures, accepted for publication in the Astrophysical Journal Supplemen
    corecore