78 research outputs found
Recommended from our members
Demonstration of the Effect of Stirring on Nucleation from Experiments on the International Space Station Using the ISS-EML Facility
The effect of fluid flow on crystal nucleation in supercooled liquids is not well understood. The variable density and temperature gradients in the liquid make it difficult to study this under terrestrial gravity conditions. Nucleation experiments were therefore made in a microgravity environment using the Electromagnetic Levitation Facility on the International Space Station on a bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling temperatures for each alloy were measured as a function of controlled stirring by applying various combinations of radio-frequency positioner and heater voltages to the water-cooled copper coils. The flow patterns were simulated from the known parameters for the coil and the levitated samples. The maximum nucleation temperatures increased systematically with increased fluid flow in the liquids for Vit106, but stayed nearly unchanged for the other two. These results are consistent with the predictions from the Coupled-Flux model for nucleation
Demonstration of the effect of stirring on nucleation from experiments on the International Space Station using the ISS-EML facility
The effect of fluid flow on crystal nucleation in supercooled liquids is not
well understood. The variable density and temperature gradients in the liquid
make it difficult to study this under terrestrial gravity conditions.
Nucleation experiments were therefore made in a microgravity environment using
the Electromagnetic Levitation facility on the International Space Station on a
bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and
the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling
temperatures for each alloy were measured as a function of controlled stirring
by applying various combinations of radio frequency positioner and heater
voltages to the water-cooled copper coils. The flow patterns were simulated
from the known parameters for the coil and the levitated samples. The maximum
nucleation temperatures increased systematically with increased fluid flow in
the liquids for Vit106, but stayed nearly unchanged for the other two. These
results are consistent with the predictions from the coupled-flux model for
nucleation.Comment: 21 pages, 2 figure
Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states
Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer\u27s disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, \u27shape connections\u27 between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus
The Emergence of Emotions
Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior
Recommended from our members
Disposal/storage container development experience
Developmental work is currently underway at the Oak Ridge National Laboratory to design and manufacture a radioactive waste container suitable for both storage and disposal of radioactive wastes. The container is designed to fulfill the Department of Energy and Nuclear Regulatory Commission requirements for on-site storage, as well as the Nuclear Regulatory Commission's requirements for high integrity containers. The project also involves meeting the strict design and manufacturing ANSI/ASME NQA-1 guidelines. Special provisions of the container include a double containment system, with the inner barrier being corrosion resistant, the capability to monitor the internal cavity of the container, and off-gas venting capability. Further, yet related developmental work includes evaluating the cask for other varied uses, such as a processing cask, an ALARA shield, and even the possibility of Department of Transportation approval for an over-the-road transport cask
- …