19,874 research outputs found

    Normalization of the covariant three-body bound state vertex function

    Full text link
    The normalization condition for the relativistic three nucleon Bethe-Salpeter and Gross bound state vertex functions is derived, for the first time, directly from the three body wave equations. It is also shown that the relativistic normalization condition for the two body Gross bound state vertex function is identical to the requirement that the bound state charge be conserved, proving that charge is automatically conserved by this equation.Comment: 24 pages, 9 figures, published version, minor typos correcte

    Theory of ice premelting in porous media

    Full text link
    Premelting describes the confluence of phenomena that are responsible for the stable existence of the liquid phase of matter in the solid region of its bulk phase diagram. Here we develop a theoretical description of the premelting of water ice contained in a porous matrix, made of a material with a melting temperature substantially larger than ice itself, to predict the amount of liquid water in the matrix at temperatures below its bulk freezing point. Our theory combines the interfacial premelting of ice in contact with the matrix, grain boundary melting in the ice, and impurity and curvature induced premelting, the latter occurring in regions which force the ice-liquid interface into a high curvature configuration. These regions are typically found at points where the matrix surface is concave, along contact lines of a grain boundary with the matrix, and in liquid veins. Both interfacial premelting and curvature induced premelting depend on the concentration of impurities in the liquid, which, due to the small segregation coefficient of impurities in ice are treated as homogeneously distributed in the premelted liquid. Our principal result is an equation for the fraction of liquid in the porous medium as a function of the undercooling, which embodies the combined effects of interfacial premelting, curvature induced premelting, and impurities. The result is analyzed in detail and applied to a range of experimentally relevant settings.Comment: 14 pages, 10 figures, accepted for publication in Physical Review

    Quark-Antiquark Bound States in the Relativistic Spectator Formalism

    Get PDF
    The quark-antiquark bound states are discussed using the relativistic spectator (Gross) equations. A relativistic covariant framework for analyzing confined bound states is developed. The relativistic linear potential developed in an earlier work is proven to give vanishing meson\to q+qˉq+\bar{q} decay amplitudes, as required by confinement. The regularization of the singularities in the linear potential that are associated with nonzero energy transfers (i.e. q2=0,qμ0q^2=0,q^{\mu}\neq0) is improved. Quark mass functions that build chiral symmetry into the theory and explain the connection between the current quark and constituent quark masses are introduced. The formalism is applied to the description of pions and kaons with reasonable results.Comment: 31 pages, 16 figure

    Pole Term and Gauge Invariance in Deep Inelastic Scattering

    Get PDF
    In this paper we reconcile two contradictory statements about deep inelastic scattering (DIS) in manifestly covariant theories: (i) the scattering must be gauge invariant, even in the deep inelastic limit, and (ii) the pole term (which is not gauge invariant in a covariant theory) dominates the scattering amplitude in the deep inelastic limit. An ``intermediate'' answer is found to be true. We show that, at all energies, the gauge dependent part of the pole term cancels the gauge dependent part of the rescattering term, so that both the pole and rescattering terms can be separately redefined in a gauge invariant fashion. The resulting, redefined pole term is then shown to dominate the scattering in the deep inelastic limit. Details are worked out for a simple example in 1+1 dimensions.Comment: 10 figure

    Gauging the three-nucleon spectator equation

    Get PDF
    We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve charge. This has been achieved by applying the recently introduced gauging of equations method to the three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external photon is attached to all possible places in the strong interaction model, so that current and charge conservation are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon bound state electromagnetic current, as well as the transition currents for the scattering processes \gamma He3 -> NNN, Nd -> \gamma Nd, and \gamma He3 -> Nd. As a result, a unified covariant three-dimensional description of the NNN-\gamma NNN system is achieved.Comment: 23 pages, REVTeX, epsf, 4 Postscript figure

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty
    corecore