22,492 research outputs found
A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows
The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well
Recommended from our members
Formation of the Wink Sink, A Salt Dissolution and Collapse Feature, Winkler County, Texas
UT Librarie
Measuring the eccentricity of the Earth orbit with a nail and a piece of plywood
I describe how to obtain a rather good experimental determination of the
eccentricity of the Earth orbit, as well as the obliquity of the Earth rotation
axis, by measuring, over the course of a year, the elevation of the Sun as a
function of time during a day. With a very simple "instrument" consisting of an
elementary sundial, first-year students can carry out an appealing measurement
programme, learn important concepts in experimental physics, see concrete
applications of kinematics and changes of reference frames, and benefit from a
hands-on introduction to astronomy.Comment: 12 pages, 6 figure
Acoustic and aerodynamic performance of a 6-foot-diameter fan for turbofan engines. 2 - Performance of QF-1 fan in nacelle without acoustic suppression
Low noise turbofan engine without aerodynamic blade loadin
Influence of environmental factors during seed development and after full-ripeness on pre-harvest sprouting in wheat
Results on environmental and genotypic factors influencing preharvest sprouting of wheat are summarized. Other possible areas where additional research is needed is suggested
Discrete symmetries and 1/3-quantum vortices in condensates of F=2 cold atoms
In this Letter we study discrete symmetries of mean field manifolds of
condensates of F=2 cold atoms, and various unconventional quantum vortices.
Discrete quaternion symmetries result in two species of spin defects that can
only appear in integer vortices while {\em cyclic} symmetries are found to
result in a phase shift of (or ) and therefore 1/3- (or 2/3-)
quantum vortices in condensates. We also briefly discuss 1/3-quantum vortices
in condensates of trimers.Comment: 4 pages, 2 figures included; published versio
Emergence of stability in a stochastically driven pendulum: beyond the Kapitsa effect
We consider a prototypical nonlinear system which can be stabilized by
multiplicative noise: an underdamped non-linear pendulum with a stochastically
vibrating pivot. A numerical solution of the pertinent Fokker-Planck equation
shows that the upper equilibrium point of the pendulum can become stable even
when the noise is white, and the "Kapitsa pendulum" effect is not at work. The
stabilization occurs in a strong-noise regime where WKB approximation does not
hold.Comment: 4 pages, 7 figure
Observations of plasma dynamics in the coma of P/Halley by the Giotto Ion Mass Spectrometer
Observations in the coma of P/Halley by the Giotto Ion Mass Spectrometer (IMS) are reported. The High Energy Range Spectrometer (HERS) of the IMS obtained measurements of protons and alpha particles from the far upstream region to the near ionopause region and of ions from mass 12 to 32 at distances of about 250,000 to 40,000 km from the nucleus. Plasma parameters from the High Intensity Spectrometer (HIS) of the IMS obtained between 150,000 to 5000 km from the nucleus are also discussed. The distribution functions of water group ions (water group will be used to refer to ions of 16 to 18 m/q, where m is in AMU and q is in unit charges) are observed to be spherically symmetric in velocity space, indicating strong pitch angle scattering. The discontinuity known as the magnetic pile-up boundary (MPB) is apparent only in proton, alpha, and magnetometer data, indicating that it is a tangential discontinuity of solar wind origin. HERS observations show no significant change in the properties of the heavy ions across the MPB. A comparison of the observations to an MHD model is made. The plasma flow directions at all distances greater than 30,000 km from the nucleus are in agreement with MHD calculations. However, despite the agreement in flow direction, within 200,000 km of the nucleus the magnitude of the velocity is lower than predicted by the MHD model and the density is much larger (a factor of 4). Within 30,000 km of the nucleus there are large theoretical differences between the MHD model flow calculations for the plane containing the magnetic field and for the plane perpendicular to the magnetic field. The observations agreed much better with the pattern calculated for the plane perpendicular to the magnetic field. The data obtained by the High Energy Range Spectrometer (HERS) of the IMS that are published herein were provided to the International Halley Watch archive
Observations of solar wind ion charge exchange in the comet Halley coma
Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet
- …