3,741 research outputs found

    Initial Conditions for Supersymmetric Inflation

    Get PDF
    We perform a numerical investigation of the fields evolution in the supersymmetric inflationary model based on radiative corrections. Supergravity corrections are also included. We find that, out of all the examined initial data, only about 10% give an adequate amount of inflation and can be considered as ''natural''. Moreover, these successful initial conditions appear scattered and more or less isolated.Comment: 15 pages RevTeX 4 eps figure

    On the reliability of inflaton potential reconstruction

    Get PDF
    If primordial scalar and tensor perturbation spectra can be inferred from observations of the cosmic background radiation and large-scale structure, then one might hope to reconstruct a unique single-field inflaton potential capable of generating the observed spectra. In this paper we examine conditions under which such a potential can be reliably reconstructed. For it to be possible at all, the spectra must be well fit by a Taylor series expansion. A complete reconstruction requires a statistically-significant tensor mode to be measured in the microwave background. We find that the observational uncertainties dominate the theoretical error from use of the slow-roll approximation, and conclude that the reconstruction procedure will never insidiously lead to an irrelevant potential.Comment: 16 page LaTeX file with eight postscript figures embedded with epsf; no special macros neede

    Evaporation and Fate of Dilatonic Black Holes

    Get PDF
    We study both spherically symmetric and rotating black holes with dilaton coupling and discuss the evaporation of these black holes via Hawking's quantum radiation and their fates. We find that the dilaton coupling constant α\alpha drastically affects the emission rates, and therefore the fates of the black holes. When the charge is conserved, the emission rate from the non-rotating hole is drastically changed beyond α=1\alpha = 1 (a superstring theory) and diverges in the extreme limit. In the rotating cases, we analyze the slowly rotating black hole solution with arbitrary α\alpha as well as three exact solutions, the Kerr--Newman (α=0\alpha = 0), and Kaluza--Klein (α=3\alpha = \sqrt{3}), and Sen black hole (α=1\alpha = 1 and with axion field). Beyond the same critical value of α1\alpha \sim 1, the emission rate becomes very large near the maximally charged limit, while for α<1\alpha<1 it remains finite. The black hole with α>1\alpha > 1 may evolve into a naked singularity due to its large emission rate. We also consider the effects of a discharge process by investigating superradiance for the non-rotating dilatonic black hole.Comment: 33 pages, LaTex, 14 postscript figure files (appended as a uuencoded compressed tar file

    Cosmology of Axions and Moduli: A Dynamical Systems Approach

    Full text link
    This paper is concerned with string cosmology and the dynamics of multiple scalar fields in potentials that can become negative, and their features as (Early) Dark Energy models. Our point of departure is the "String Axiverse", a scenario that motivates the existence of cosmologically light axion fields as a generic consequence of string theory. We couple such an axion to its corresponding modulus. We give a detailed presentation of the rich cosmology of such a model, ranging from the setting of initial conditions on the fields during inflation, to the asymptotic future. We present some simplifying assumptions based on the fixing of the axion decay constant faf_a, and on the effective field theory when the modulus trajectory is adiabatic, and find the conditions under which these assumptions break down. As a by-product of our analysis, we find that relaxing the assumption of fixed faf_a leads to the appearance of a new meta-stable de-Sitter region for the modulus without the need for uplifting by an additional constant. A dynamical systems analysis reveals the existence of many fixed point attractors, repellers and saddle points, which we analyse in detail. We also provide geometric interpretations of the phase space. The fixed points can be used to bound the couplings in the model. A systematic scan of certain regions of parameter space reveals that the future evolution of the universe in this model can be rich, containing multiple epochs of accelerated expansion.Comment: 27 pages, 12 figures, comments welcome, v2 minor correction

    Slow 4He^{4}He Quenches Produce Fuzzy, Transient Vortices

    Full text link
    We examine the Zurek scenario for the production of vortices in quenches of liquid 4He^{4}He in the light of recent experiments. Extending our previous results to later times, we argue that short wavelength thermal fluctuations make vortices poorly defined until after the transition has occurred. Further, if and when vortices appear, it is plausible that that they will decay faster than anticipated from turbulence experiments, irrespective of quench rates.Comment: 4 pages, Revtex file, no figures Apart from a more appropriate title, this paper differs from its predecessor by including temperature, as well as pressure, quenche

    Cardiac transplantation in patients over 50 years of age

    Get PDF
    Sixty-two patients underwent cardiac transplantation at the University of Arizona from March 1979 to March 1985. Thirteen patients (11 men and 2 women) were over 50 years of age at the time of transplantation and 49 were under the age of 50. The mean age (± SEM) of the patients over 50 was 53 ± 1 years. Eight of these patients were treated with conventional immunosuppressive therapy (azathioprine, prednisone and rabbit antithymocyte globulin) and Ave, beginning in January 1983, were treated with cyclosporine, prednisone and rabbit antithymocyte globulin.Early mortality (0 to 90 days) was 16% in the group over 50 versus 18% for those under 50. The late mortality (> 90 days) was 36 and 33%, respectively. In both groups, rejection and infection were the principal causes of death. The incidence of infection was 1.9 ± 0.5 episodes per patient in those patients over 50 and 1.9 ± 0.4 in those under 50. The incidence of rejection was 1.3 episodes per patient-year in patients over 50 and 1.7 episodes per patient-year in those under 50. Actuarial survival at 1 year was 72 ± 14% in the group over 50 and 66 ± 7% in the group under 50 years of age.These data indicate that the results of cardiac transplantation for patients over 50 do not differ significantly from those for patients under 50. Therefore, it is concluded that a rigidly defined age criterion for cardiac transplant recipients is not acceptable. Each potential recipient must be evaluated in terms of individual risk and benefit from the procedure

    A Model for the Big Bounce

    Full text link
    I motivate a proposal for modeling, at weak string coupling, the ``Big Bounce" transition from a growing-curvature phase to standard (FRW) cosmology in terms of a pressure-less dense gas of "string-holes" (SH), string states lying on the correspondence curve between strings and black holes. During this phase SH evolve in such a way that temperature and (string-frame) curvature remain O(Ms)O(M_s) and (a cosmological version of) the holographic entropy bound remains saturated. This reasoning also appears to imply a new interpretation of the Hagedorn phase transition in string theory.Comment: 10 pages, 2 figure

    A symmetry for vanishing cosmological constant

    Get PDF
    Two different realizations of a symmetry principle that impose a zero cosmological constant in an extra-dimensional set-up are studied. The symmetry is identified by multiplication of the metric by minus one. In the first realization of the symmetry this is provided by a symmetry transformation that multiplies the coordinates by the imaginary number i. In the second realization this is accomplished by a symmetry transformation that multiplies the metric tensor by minus one. In both realizations of the symmetry the requirement of the invariance of the gravitational action under the symmetry selects out the dimensions given by D = 2(2n+1), n=0,1,2,... and forbids a bulk cosmological constant. Another attractive aspect of the symmetry is that it seems to be more promising for quantization when compared to the usual scale symmetry. The second realization of the symmetry is more attractive in that it is posible to make a possible brane cosmological constant zero in a simple way by using the same symmetry, and the symmetry may be identified by reflection symmetry in extra dimensions.Comment: Talk in the conference IRGAC 2006, 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelon

    The evolution of a network of cosmic string loops

    Get PDF
    We set up and analyse a model for the non-equilibrium evolution of a network of cosmic strings initially containing only loops and no infinite strings. Due to this particular initial condition, our analytical approach differs significantly from existing ones. We describe the average properties of the network in terms of the distribution function n(l,t) dl, the average number of loops per unit volume with physical length between l and l + dl at time t. The dynamical processes which change the length of loops are then estimated and an equation, which we call the `rate equation', is derived for (dn/dt). In a non-expanding universe, the loops should reach the equilibrium distribution predicted by string statistical mechanics. Analysis of the rate equation gives results consistent with this. We then study the rate equation in an expanding universe and suggest that three different final states are possible for the evolving loop network, each of which may well be realised for some initial conditions. If the initial energy density in loops in the radiation era is low, then the loops rapidly disappear. For large initial energy densities, we expect that either infinite strings are formed or that the loops tend towards a scaling solution in the radiation era and then rapidly disappear in the matter era. Such a scenario may be relevant given recent work highlighting the problems with structure formation from the standard cosmic string scenario.Comment: LaTeX, 27 pages, 10 figures included as .eps file

    Numerical experiments with p F- and q D-strings: the formation of (p,q) bound states

    Full text link
    We investigate the behaviour of (p,q) string networks, focusing on two aspects: (1) modelling more realistic (p,q) string networks than the Z_N networks used so far and (2) investigating the effect of long-range interactions on the evolution of the network. We model the network with no long-range interactions using two sets of fields, complex scalars coupled to gauge fields, with a potential chosen such that the two types of strings will form bound states. This way we can model junctions of 3 strings with different tension; in Z_N models used so far in simulations all the strings have identical tensions. In order to introduce long-range interactions we also study a network in which one of the scalars forms global strings. We observe that in the absence of long-range interactions the formation of bound states has a significant influence on the evolution of the network. When long-range interactions are turned on the bound states are short-lived and have a minimal effect on the network evolution.Comment: 17 pages, 8 figures, JCAP styl
    corecore