138 research outputs found
On the feasibility of a nuclear exciton laser
Nuclear excitons known from M\"ossbauer spectroscopy describe coherent
excitations of a large number of nuclei -- analogous to Dicke states (or Dicke
super-radiance) in quantum optics. In this paper, we study the possibility of
constructing a laser based on these coherent excitations. In contrast to the
free electron laser (in its usual design), such a device would be based on
stimulated emission and thus might offer certain advantages, e.g., regarding
energy-momentum accuracy. Unfortunately, inserting realistic parameters, the
window of operability is probably not open (yet) to present-day technology --
but our design should be feasible in the UV regime, for example.Comment: 7 pages RevTeX, 4 figure
Coherent Schwinger Interaction from Darboux Transformation
The exactly solvable scalar-tensor potential of the four-component Dirac
equation has been obtained by the Darboux transformation method. The
constructed potential has been interpreted in terms of nucleon-nucleon and
Schwinger interactions of neutral particles with lattice sites during their
channeling Hamiltonians of a Schwinger type is obtained by means of the Darboux
transformation chain. The analitic structure of the Lyapunov function of
periodic continuation for each of the Hamiltonians of the family is considered.Comment: 12 pages, Latex, six figures; six sections, one figure adde
Spin pumping in YIG-Pt structures: the role of the van Hove singularities
Spin pumping by surface and backward volume magnetostatic waves in YIG/Pt
structures is experimentally studied and analyzed. It is shown that at
frequencies corresponding to van Hove singularities in the density of states of
the spin wave spectrum, an increase in the efficiency of electron-magnon
scattering and spin current generation takes place. The obtained results are
important for spin wave-based spintronic devices development
Effective Lagrangians and Chiral Random Matrix Theory
Recently, sum rules were derived for the inverse eigenvalues of the Dirac
operator. They were obtained in two different ways: i) starting from the
low-energy effective Lagrangian and ii) starting from a random matrix theory
with the symmetries of the Dirac operator. This suggests that the effective
theory can be obtained directly from the random matrix theory. Previously, this
was shown for three or more colors with fundamental fermions. In this paper we
construct the effective theory from a random matrix theory for two colors in
the fundamental representation and for an arbitrary number of colors in the
adjoint representation. We construct a fermionic partition function for
Majorana fermions in Euclidean space time. Their reality condition is
formulated in terms of complex conjugation of the second kind.Comment: 27 page
Decoupling of Massive Right-handed Neutrinos
We investigate the effect of B+L - violating anomalous generation of massive
right-handed neutrinos on their decoupling, when the right-handed neutrino mass
is considerably greater than the right-handed gauge boson masses. Considering
normal annihilation channels, the Lee-Weinberg type of calculation, in this
case, gives an upper bound of about 700 Gev, which casts doubt on the existence
of such a right-handed neutrino mass greater than right-handed gauge boson
masses. We examine the possibility that a consideration of anomalous effects
related to the SU(2)_R gauge group may turn this into a lower bound of the
order of 100 Tev.Comment: 28 Pages, Latex, 2 figure
Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals
We briefly summarize the reported anomalous effects in deuterated metals at
ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on
important experiments as well as the theoretical basis for the opposition to
interpreting them as cold fusion. Then we critically examine more than 25
theoretical models for CF, including unusual nuclear and exotic chemical
hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
Inertial mechanism: dynamical mass as a source of particle creation
A kinetic theory of vacuum particle creation under the action of an inertial
mechanism is constructed within a nonpertrubative dynamical approach. At the
semi-phenomenological level, the inertial mechanism corresponds to quantum
field theory with a time-dependent mass. At the microscopic level, such a
dependence may be caused by different reasons: The non-stationary Higgs
mechanism, the influence of a mean field or condensate, the presence of the
conformal multiplier in the scalar-tensor gravitation theory etc. In what
follows, a kinetic theory in the collisionless approximation is developed for
scalar, spinor and massive vector fields in the framework of the oscillator
representation, which is an effective tool for transition to the quasiparticle
description and for derivation of non-Markovian kinetic equations. Properties
of these equations and relevant observables (particle number and energy
densities, pressure) are studied. The developed theory is applied here to
describe the vacuum matter creation in conformal cosmological models and
discuss the problem of the observed number density of photons in the cosmic
microwave background radiation. As other example, the self-consistent evolution
of scalar fields with non-monotonic self-interaction potentials (the
W-potential and Witten - Di Vecchia - Veneziano model) is considered. In
particular, conditions for appearance of tachyonic modes and a problem of the
relevant definition of a vacuum state are considered.Comment: 51 pages, 18 figures, submitted to PEPAN (JINR, Dubna); v2: added
reference
Theory, Phenomenology, and Prospects for Detection of Supersymmetric Dark Matter
One of the great attractions of minimal super-unified supersymmetric models
is the prediction of a massive, stable, weakly interacting particle (the
lightest supersymmetric partner, LSP) which can have the right relic abundance
to be a cold dark matter candidate. In this paper we investigate the identity,
mass, and properties of the LSP after requiring gauge coupling unification,
proper electroweak symmetry breaking, and numerous phenomenological
constraints. We then discuss the prospects for detecting the LSP from (1) LSP
annihilations into positrons, anti-protons, and gamma rays in the galactic
halo, (2) large underground arrays to detect upward going muons arising from
LSP capture and annihilation in the sun and earth, (3) elastic collisions on
matter in a table top apparatus, and (4) production of LSPs or decays into LSPs
at high energy colliders. Our conclusions are that space annihilation
experiments and large underground detectors are of limited help in initially
detecting the LSP although perhaps they could provide confirmation of a signal
seen in other experiments, while table top detectors have considerable
discovery potential. Colliders, however, might be the best dark matter
detectors of all.Comment: 32 pages, 18 figures (not included). Full postscript version
available via anonymous ftp at ftp://141.211.96.66/pub/preprint
- …