1,899 research outputs found

    Statistical theory of thermal evolution of neutron stars

    Full text link
    Thermal evolution of neutron stars is known to depend on the properties of superdense matter in neutron star cores. We suggest a statistical analysis of isolated cooling middle-aged neutron stars and old transiently accreting quasi-stationary neutron stars warmed up by deep crustal heating in low-mass X-ray binaries. The method is based on simulations of the evolution of stars of different masses and on averaging the results over respective mass distributions. This gives theoretical distributions of isolated neutron stars in the surface temperature--age plane and of accreting stars in the photon thermal luminosity--mean mass accretion rate plane to be compared with observations. This approach permits to explore not only superdense matter but also the mass distributions of isolated and accreting neutron stars. We show that the observations of these stars can be reasonably well explained by assuming the presence of the powerful direct Urca process of neutrino emission in the inner cores of massive stars, introducing a slight broadening of the direct Urca threshold (for instance, by proton superfluidity), and by tuning mass distributions of isolated and accreted neutron stars.Comment: 13 pages, 20 figure

    Phase and Power Control in the RF Magnetron Power Stations of Superconducting Accelerators

    Full text link
    Phase and power control methods that satisfy the requirements of superconducting accelerators to magnetron RF sources were considered by a simplified kinetic model of a magnetron driven by a resonant injected signal. The model predicting and explaining stable, low noise operation of the tube below the threshold of self-excitation (the Hatrree voltage in free run mode) at a highest efficiency, a wide range of power control and a wide-band phase control was well verified in experiments demonstrating capabilities of the magnetron transmitters for powering of state of the art superconducting accelerators. Descriptions of the kinetic model, the experimental verification and a conceptual scheme of the highly-efficient magnetron RF transmitter for the accelerators are presented and discussed.Comment: 10 pages, 15 figure

    Neutrino emission in neutron matter from magnetic moment interactions

    Full text link
    Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low energy (∼\sim keV) nature of this process, one expects very few nonstandard particle physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the tau magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor two, signalling the importance of new particle physics input to a standard calculation of relevance to neutron star cooling. However, astrophysical bounds on the neutrino magnetic moment imply smaller effects.Comment: 9 pages, 1 figur
    • …
    corecore