1,664 research outputs found

    Dynamical differential equations compatible with rational qKZ equations

    Full text link
    For the Lie algebra glNgl_N we introduce a system of differential operators called the dynamical operators. We prove that the dynamical differential operators commute with the glNgl_N rational quantized Knizhnik-Zamolodchikov difference operators. We describe the transformations of the dynamical operators under the natural action of the glNgl_N Weyl group.Comment: 7 pages, AmsLaTe

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Fractional Generalization of Gradient Systems

    Full text link
    We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems.Comment: 11 pages, LaTe

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Dynamics of Fractal Solids

    Full text link
    We describe the fractal solid by a special continuous medium model. We propose to describe the fractal solid by a fractional continuous model, where all characteristics and fields are defined everywhere in the volume but they follow some generalized equations which are derived by using integrals of fractional order. The order of fractional integral can be equal to the fractal mass dimension of the solid. Fractional integrals are considered as an approximation of integrals on fractals. We suggest the approach to compute the moments of inertia for fractal solids. The dynamics of fractal solids are described by the usual Euler's equations. The possible experimental test of the continuous medium model for fractal solids is considered.Comment: 12 pages, LaTe

    Fractional Derivative as Fractional Power of Derivative

    Full text link
    Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.Comment: 20 pages, LaTe

    Path Integral for Quantum Operations

    Full text link
    In this paper we consider a phase space path integral for general time-dependent quantum operations, not necessarily unitary. We obtain the path integral for a completely positive quantum operation satisfied Lindblad equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator.Comment: 24 pages, LaTe

    Nonholonomic Constraints with Fractional Derivatives

    Full text link
    We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle.Comment: 18 page

    Psi-Series Solution of Fractional Ginzburg-Landau Equation

    Full text link
    One-dimensional Ginzburg-Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order alphaalpha with polynomial nonlinearity of order ss have the noninteger power-like behavior of order α/(1−s)\alpha/(1-s) near the singularity.Comment: LaTeX, 19 pages, 2 figure
    • …
    corecore