77 research outputs found
Electronic structure and magnetic anisotropy of CrO_2
The problem of importance of strong correlations for the electronic
structure, transport and magnetic properties of half--metallic ferromagnetic
CrO_2 is addressed by performing density functional electronic structure
calculations in the local spin density approximation (LSDA) as well as using
the LSDA+U method. It is shown that the corresponding low--temperature
experimental data are best fitted without accounting for the Hubbard U
corrections. We conclude that the ordered phase of CrO$_2 is weakly correlated.Comment: 5 pages, 7 EPS figures, in RevTex forma
Electronic Structure and Magnetic Properties of Solids
We review basic computational techniques for simulations of various magnetic
properties of solids. Several applications to compute magnetic anisotropy
energy, spin wave spectra, magnetic susceptibilities and temperature dependent
magnetisations for a number of real systems are presented for illustrative
purposes.Comment: Review article; To appear in Journal of Computational Crystallograph
Structural and superconducting transition in selenium under high pressures
First-principles calculations are performed for electronic structures of two
high pressure phases of solid selenium, -Po and bcc.
Our calculation reproduces well the pressure-induced phase transition from
-Po to bcc observed in selenium.
The calculated transition pressure is 30 GPa lower than the observed one, but
the calculated pressure dependence of the lattice parameters agrees fairly well
with the observations in a wide range of pressure.
We estimate the superconducting transition temperature of both
the -Po and the bcc phases by calculating the phonon dispersion and the
electron-phonon interaction on the basis of density-functional perturbation
theory.
The calculated shows a characteristic pressure dependence, i.e.
it is rather pressure independent in the -Po phase, shows a
discontinuous jump at the transition from -Po to bcc, and then decreases
rapidly with increasing pressure in the bcc phase.Comment: 8 pages, 11 figure
Linear Response Calculations of Spin Fluctuations
A variational formulation of the time--dependent linear response based on the
Sternheimer method is developed in order to make practical ab initio
calculations of dynamical spin susceptibilities of solids. Using gradient
density functional and a muffin-tin-orbital representation, the efficiency of
the approach is demonstrated by applications to selected magnetic and strongly
paramagnetic metals. The results are found to be consistent with experiment and
are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing
(~1200dpi) is desire
Interpolative Approach for Solving the Anderson Impurity Model
A rational representation for the self--energy is explored to interpolate the
solution of the Anderson impurity model in general orbitally degenerate case.
Several constrains such as the Friedel's sum rule, positions of the Hubbard
bands as well as the value of quasiparticle residue are used to establish the
equations for the coefficients of the interpolation. We employ two fast
techniques, the slave--boson mean--field and the Hubbard I approximations to
determine the functional dependence of the coefficients on doping, degeneracy
and the strength of the interaction. The obtained spectral functions and
self--energies are in good agreement with the results of numerically exact
quantum Monte Carlo method.Comment: 15 pages, 9 figure
Linear-response theory and lattice dynamics: a muffin-tin orbital approach
A detailed description of a method for calculating static linear-response
functions in the problem of lattice dynamics is presented. The method is based
on density functional theory and it uses linear muffin-tin orbitals as a basis
for representing first-order corrections to the one-electron wave functions. As
an application we calculate phonon dispersions in Si and NbC and find good
agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil
Critical temperature and giant isotope effect in presence of paramagnons
We reconsider the long-standing problem of the effect of spin fluctuations on
the critical temperature and isotope effect in a phonon-mediated
superconductor. Although the general physics of the interplay between phonons
and paramagnons had been rather well understood, the existing approximate
formulas fail to describe the correct behavior of for general phonon
and paramagnon spectra. Using a controllable approximation, we derive an
analytical formula for which agrees well with exact numerical solutions
of the Eliashberg equations for a broad range of parameters. Based on both
numerical and analytical results, we predict a strong enhancement of the
isotope effect when the frequencies of spin fluctuation and phonons are of the
same order. This effect may have important consequences for near-magnetic
superconductors such as MgCNiComment: 5 pages, 2 figure
Acoustical-Mode-Driven Electron-Phonon Coupling in Transition-Metal Diborides
We show that the electron-phonon coupling in the transition-metal diborides
NbB2 and TaB2 is dominated by the longitudinal acoustical (LA) mode, in
contrast to the optical E_{2g} mode dominated coupling in MgB2. Our ab initio
results, described in terms of phonon dispersion, linewidth, and partial
electron-phonon coupling along Gamma to A, also show that (i) NbB2 and TaB2
have a relatively weak electron-phonon coupling, (ii) the E_{2g} linewidth is
an order of magnitude larger in MgB2 than in NbB2 or TaB2, (iii) the E_{2g}
frequency in NbB2 and TaB2 is considerably higher than in MgB2, and (iv) the LA
frequency at A for TaB2 is almost half of that of MgB2 or NbB2.Comment: 4 pages, 4 figures, and 1 tabl
- …