77 research outputs found

    Electronic structure and magnetic anisotropy of CrO_2

    Full text link
    The problem of importance of strong correlations for the electronic structure, transport and magnetic properties of half--metallic ferromagnetic CrO_2 is addressed by performing density functional electronic structure calculations in the local spin density approximation (LSDA) as well as using the LSDA+U method. It is shown that the corresponding low--temperature experimental data are best fitted without accounting for the Hubbard U corrections. We conclude that the ordered phase of CrO$_2 is weakly correlated.Comment: 5 pages, 7 EPS figures, in RevTex forma

    Electronic Structure and Magnetic Properties of Solids

    Full text link
    We review basic computational techniques for simulations of various magnetic properties of solids. Several applications to compute magnetic anisotropy energy, spin wave spectra, magnetic susceptibilities and temperature dependent magnetisations for a number of real systems are presented for illustrative purposes.Comment: Review article; To appear in Journal of Computational Crystallograph

    Structural and superconducting transition in selenium under high pressures

    Get PDF
    First-principles calculations are performed for electronic structures of two high pressure phases of solid selenium, β\beta-Po and bcc. Our calculation reproduces well the pressure-induced phase transition from β\beta-Po to bcc observed in selenium. The calculated transition pressure is 30 GPa lower than the observed one, but the calculated pressure dependence of the lattice parameters agrees fairly well with the observations in a wide range of pressure. We estimate the superconducting transition temperature TcT_{\rm c} of both the β\beta-Po and the bcc phases by calculating the phonon dispersion and the electron-phonon interaction on the basis of density-functional perturbation theory. The calculated TcT_{\rm c} shows a characteristic pressure dependence, i.e. it is rather pressure independent in the β\beta-Po phase, shows a discontinuous jump at the transition from β\beta-Po to bcc, and then decreases rapidly with increasing pressure in the bcc phase.Comment: 8 pages, 11 figure

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    Interpolative Approach for Solving the Anderson Impurity Model

    Full text link
    A rational representation for the self--energy is explored to interpolate the solution of the Anderson impurity model in general orbitally degenerate case. Several constrains such as the Friedel's sum rule, positions of the Hubbard bands as well as the value of quasiparticle residue are used to establish the equations for the coefficients of the interpolation. We employ two fast techniques, the slave--boson mean--field and the Hubbard I approximations to determine the functional dependence of the coefficients on doping, degeneracy and the strength of the interaction. The obtained spectral functions and self--energies are in good agreement with the results of numerically exact quantum Monte Carlo method.Comment: 15 pages, 9 figure

    Linear-response theory and lattice dynamics: a muffin-tin orbital approach

    Full text link
    A detailed description of a method for calculating static linear-response functions in the problem of lattice dynamics is presented. The method is based on density functional theory and it uses linear muffin-tin orbitals as a basis for representing first-order corrections to the one-electron wave functions. As an application we calculate phonon dispersions in Si and NbC and find good agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil

    Critical temperature and giant isotope effect in presence of paramagnons

    Get PDF
    We reconsider the long-standing problem of the effect of spin fluctuations on the critical temperature and isotope effect in a phonon-mediated superconductor. Although the general physics of the interplay between phonons and paramagnons had been rather well understood, the existing approximate formulas fail to describe the correct behavior of % T_{c} for general phonon and paramagnon spectra. Using a controllable approximation, we derive an analytical formula for TcT_{c} which agrees well with exact numerical solutions of the Eliashberg equations for a broad range of parameters. Based on both numerical and analytical results, we predict a strong enhancement of the isotope effect when the frequencies of spin fluctuation and phonons are of the same order. This effect may have important consequences for near-magnetic superconductors such as MgCNi3_{3}Comment: 5 pages, 2 figure

    Acoustical-Mode-Driven Electron-Phonon Coupling in Transition-Metal Diborides

    Full text link
    We show that the electron-phonon coupling in the transition-metal diborides NbB2 and TaB2 is dominated by the longitudinal acoustical (LA) mode, in contrast to the optical E_{2g} mode dominated coupling in MgB2. Our ab initio results, described in terms of phonon dispersion, linewidth, and partial electron-phonon coupling along Gamma to A, also show that (i) NbB2 and TaB2 have a relatively weak electron-phonon coupling, (ii) the E_{2g} linewidth is an order of magnitude larger in MgB2 than in NbB2 or TaB2, (iii) the E_{2g} frequency in NbB2 and TaB2 is considerably higher than in MgB2, and (iv) the LA frequency at A for TaB2 is almost half of that of MgB2 or NbB2.Comment: 4 pages, 4 figures, and 1 tabl
    corecore