9 research outputs found

    Conformal Anomaly for Free Scalar Propagation on Curved Bounded Manifolds

    Full text link
    The trace anomaly for free propagation in the context of a conformally invariant scalar field theory defined on a curved manifold of positive constant curvature with boundary is evaluated through use of an asymptotic heat kernel expansion. In addition to their direct physical significance the results are also of relevance to the holographic principle and to Quantum Cosmology.Comment: 8 pages. To appear in General Relativity and Gravitatio

    Radiative Contributions to the Effective Action of Self-Interacting Scalar Field on a Manifold with Boundary

    Get PDF
    The effect of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The analysis is most easily performed in a space of constant curvature the boundary of which is characterised by constant extrinsic curvature. An extension of the spherical formulation in the presence of a boundary is attained through use of the method of images. Contrary to the consolidated vanishing effect in maximally symmetric space-times the contribution of the massless "tadpole" diagram no longer vanishes in dimensional regularisation. As a result, conformal invariance is broken due to boundary-related vacuum contributions. The evaluation of one-loop contributions to the two-point function suggests an extension, in the presence of matter couplings, of the simultaneous volume and boundary renormalisation in the effective action.Comment: 14 pages, 1 figure. Additional references and minor elucidating remarks added. To appear in Classical and Quantum Gravit

    Spherical Formulation for Diagramatic Evaluations on a Manifold with Boundary

    Full text link
    The mathematical formalism necessary for the diagramatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagramatic techniques. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory for which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analyzed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.Comment: 12 pages, references added. To appear in Classical and Quantum Gravit

    Perturbative Evaluation of the Zero-Point function for Self-Interacting Scalar Field on a Manifold with Boundary

    Get PDF
    The character of quantum corrections to the gravitational action of a conformally invariant field theory for a self-interacting scalar field on a manifold with boundary is considered at third loop-order in the perturbative expansion of the zero-point function. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. The associated spherical formulation for diagramatic evaluations reveals a non-trivial effect which the topology of the manifold has on the vacuum processes and which ultimately dissociates the dynamical behaviour of the quantised field from its behaviour in the absence of a boundary. The first surface divergence is evaluated and the necessity for simultaneous renormalisation of volume and surface divergences is shown.Comment: 19 pages, 2 figures, one figure and references added, substantial extension of the discussion. To appear in Classical and Quantum Gravit

    Bulk versus brane running couplings

    Get PDF
    A simplified higher dimensional Randall-Sundrum-like model in 6 dimensions is considered. It has been observed previously by Goldberger and Wise that in such a self-interacting scalar theory on the bulk with a conical singularity there is mixing of renormalization of 4d brane couplings with that of the bulk couplings. We study the influence of the running bulk couplings on the running of the 4d brane couplings. We find that bulk quantum effects may completely alter the running of brane couplings. In particular, the structure of the Landau pole may be drastically altered and non-asymptotically free running may turn into asymptotically safe (or free) behavior.Comment: 11 pages, no figures, REVTeX
    corecore