1 research outputs found
Atoms-Photonic Field Interaction: Influence Functional and Perturbation Theory
We study the dynamics of one-electron atoms interacting with a pulsed, elliptically polarized, ultrashort, and coherent state. We use path integral methods. We path integrate the photonic part and extract the corresponding influence functional describing the interaction of the pulse with the atomic electron. Then we angularly decompose it. We keep the first-order angular terms in all but the last factor as otherwise their angular integration would contribute infinites as the number of time slices tends to infinity. Further we use the perturbative expansion of the last factor in powers of the inverse volume and integrate on time. Finally, we obtain a closed angularly decomposed expression of the whole path integral. As an application we develop a scattering theory and study the two-photon ionization of hydrogen