21,944 research outputs found
Quantum fluctuations of Cosmological Perturbations in Generalized Gravity
Recently, we presented a unified way of analysing classical cosmological
perturbation in generalized gravity theories. In this paper, we derive the
perturbation spectrums generated from quantum fluctuations again in unified
forms. We consider a situation where an accelerated expansion phase of the
early universe is realized in a particular generic phase of the generalized
gravity. We take the perturbative semiclassical approximation which treats the
perturbed parts of the metric and matter fields as quantum mechanical
operators. Our generic results include the conventional power-law and
exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure
On a self-sustained process at large scale in the turbulent channel flow
Large-scale motions, important in turbulent shear flows, are frequently
attributed to the interaction of structures at smaller scale. Here we show
that, in a turbulent channel at Re_{\tau} \approx 550, large-scale motions can
self-sustain even when smaller-scale structures populating the near-wall and
logarithmic regions are artificially quenched. This large-scale self-sustained
mechanism is not active in periodic boxes of width smaller than Lz ~ 1.5h or
length shorter than Lx ~ 3h which correspond well to the most energetic large
scales observed in the turbulent channel
Gas-Surface Dynamics and Profile Evolution during Etching of Silicon
Scattering of energetic F atoms on a fluorinated Si surface is studied by molecular beam methods. The energy transfer closely follows hard-sphere collision kinematics. Energy and angular distributions of unreacted F atoms suggest significant multiple-bounce scattering in addition to single-bounce scattering and trapping desorption. An empirical model of the atom-surface interaction dynamics is used in a Monte Carlo simulation of topography evolution during neutral beam etching of Si. Model predictions of profile phenomena are validated by experiments
Relativistic Hydrodynamic Cosmological Perturbations
Relativistic cosmological perturbation analyses can be made based on several
different fundamental gauge conditions. In the pressureless limit the variables
in certain gauge conditions show the correct Newtonian behaviors. Considering
the general curvature () and the cosmological constant () in the
background medium, the perturbed density in the comoving gauge, and the
perturbed velocity and the perturbed potential in the zero-shear gauge show the
same behavior as the Newtonian ones in general scales. In the first part, we
elaborate these Newtonian correspondences. In the second part, using the
identified gauge-invariant variables with correct Newtonian correspondences, we
present the relativistic results with general pressures in the background and
perturbation. We present the general super-sound-horizon scale solutions of the
above mentioned variables valid for general , , and generally
evolving equation of state. We show that, for vanishing , the
super-sound-horizon scale evolution is characterised by a conserved variable
which is the perturbed three-space curvature in the comoving gauge. We also
present equations for the multi-component hydrodynamic situation and for the
rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra
Cosmological perturbations in a gravity with quadratic order curvature couplings
We present a set of equations describing the evolution of the scalar-type
cosmological perturbation in a gravity with general quadratic order curvature
coupling terms. Equations are presented in a gauge ready form, thus are ready
to implement various temporal gauge conditions depending on the problems. The
Ricci-curvature square term leads to a fourth-order differential equation for
describing the spacetime fluctuations in a spatially homogeneous and isotropic
cosmological background.Comment: 5 pages, no figure, To appear in Phys. Rev.
Third-order cosmological perturbations of zero-pressure multi-component fluids: Pure general relativistic nonlinear effects
Present expansion stage of the universe is believed to be mainly governed by
the cosmological constant, collisionless dark matter and baryonic matter. The
latter two components are often modeled as zero-pressure fluids. In our
previous work we have shown that to the second-order cosmological
perturbations, the relativistic equations of the zero-pressure, irrotational,
multi-component fluids in a spatially near flat background effectively coincide
with the Newtonian equations. As the Newtonian equations only have quadratic
order nonlinearity, it is practically interesting to derive the potential
third-order perturbation terms in general relativistic treatment which
correspond to pure general relativistic corrections. Here, we present pure
general relativistic correction terms appearing in the third-order
perturbations of the multi-component zero-pressure fluids. We show that, as in
a single component situation, the third-order correction terms are quite small
(~ 5 x10^{-5} smaller compared with the relativistic/Newtonian second-order
terms) due to the weak level anisotropy of the cosmic microwave background
radiation. Still, there do exist pure general relativistic correction terms in
third-order perturbations which could potentially become important in future
development of precision cosmology. We include the cosmological constant in all
our analyses.Comment: 20 pages, no figur
Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4
Electrons at interfaces, driven to minimize their free energy, are
distributed differently than in bulk. This can be dramatic at interfaces
involving heterovalent compounds. Here we profile an abrupt interface between V
3d2 LaVO3 and V 3d0 LaVO4 using electron energy loss spectroscopy. Although no
bulk phase of LaVOx with a V 3d1 configuration exists, we find a nanometer-wide
region of V 3d1 at the LaVO3/LaVO4 interface, rather than a mixture of V 3d0
and V 3d2. The two-dimensional sheet of 3d1 electrons is a prototypical
electronic reconstruction at an interface between competing ground states.Comment: 14 pages, 5 figure
Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects
We consider a general relativistic zero-pressure irrotational cosmological
medium perturbed to the third order. We assume a flat Friedmann background but
include the cosmological constant. We ignore the rotational perturbation which
decays in expanding phase. In our previous studies we discovered that, to the
second-order perturbation, except for the gravitational wave contributions, the
relativistic equations coincide exactly with the previously known Newtonian
ones. Since the Newtonian second-order equations are fully nonlinear, any
nonvanishing third and higher order terms in the relativistic analyses are
supposed to be pure relativistic corrections. In this work we derive such
correction terms appearing in the third order. Continuing our success in the
second-order perturbations we take the comoving gauge. We discover that the
third-order correction terms are of -order higher than the second-order
terms where is a gauge-invariant combination related to the
three-space curvature perturbation in the comoving gauge; compared with the
Newtonian potential we have to the linear
order. Therefore, the pure general relativistic effects are of -order
higher than the Newtonian ones. The corrections terms are independent of the
horizon scale and depend only on the linear order gravitational potential
perturbation strength. From the temperature anisotropy of cosmic microwave
background we have . Therefore, our present result reinforces our
previous important practical implication that near current era one can use the
large-scale Newtonian numerical simulation more reliably even as the simulation
scale approaches near the horizon.Comment: 9 pages, no figur
Dynamical study of the hyperextended scalar-tensor theory in the empty Bianchi type I model
The dynamics of the hyperextended scalar-tensor theory in the empty Bianchi
type I model is investigated. We describe a method giving the sign of the first
and second derivatives of the metric functions whatever the coupling function.
Hence, we can predict if a theory gives birth to expanding, contracting,
bouncing or inflationary cosmology. The dynamics of a string inspired theory
without antisymetric field strength is analysed. Some exact solutions are
found.Comment: 18 pages, 3 figure
Deuterium site occupancy and phase boundaries in ZrNiDx (0.87<=x<=3.0)
ZrNiDx samples with compositions between x=0.87 and x=3.0 were investigated by 2H magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR), powder x-ray diffraction (XRD), neutron vibrational spectroscopy (NVS), and neutron powder diffraction (NPD). The rigid-lattice MAS-NMR spectrum for a ZrNiD0.88 sample in the triclinic beta phase shows a single phase with two well-resolved resonances at +11.5 and −1.7 ppm, indicating that two inequivalent D sites are occupied, as was observed previously in ZrNiD1.0. For ZrNiD0.88, the ratio of spectral intensities of the two lines is 1:0.76, indicating that the D site corresponding to the +11.5 ppm line has the lower site energy and is fully occupied. Similarly, the neutron vibrational spectra for ZrNiD0.88 clearly confirm that at least two sites are occupied. For ZrNiD1.0, XRD indicates that ~5% of the metal atoms are in the gamma phase, corresponding to an upper composition for the beta phase of x=0.90±0.04, consistent with the MAS-NMR and neutron vibrational spectra indicating that x=0.88 is single phase. The MAS-NMR and NVS of ZrNiD1.87 indicate a mixed-phase sample (beta+gamma) and clearly show that the two inequivalent sites observed at x=0.88 cannot be attributed to the sites normally occupied in the gamma phase. For ZrNiD2.75, NPD results indicate a gamma-phase boundary of x=2.86±0.03 at 300 K, increasing to 2.93±0.02 at 180 K and below, in general agreement with the phase boundary estimated from the NVS and MAS-NMR spectra of ZrNiD1.87. Rigid-lattice 2H MAS-NMR spectra of ZrNiD2.75 and ZrNiD2.99 show a ratio of spectral intensities of 1.8±0.1:1 and 2.1±0.1:1 (Zr3Ni:Zr3Ni2), respectively, indicating complete occupancy of the lower-energy Zr3Ni2 site, consistent with the NPD results. For each composition, the correlation time for deuterium hopping was determined at the temperature where resolved peaks in the MAS-NMR spectrum coalesce due to motion between inequivalent D sites. The measured correlation times are consistent with previously determined motional parameters for ZrNiHx
- …