1,965,434 research outputs found
TransPlanckian Particles and the Quantization of Time
Trans-Planckian particles are elementary particles accelerated such that
their energies surpass the Planck value. There are several reasons to believe
that trans-Planckian particles do not represent independent degrees of freedom
in Hilbert space, but they are controlled by the cis-Planckian particles. A way
to learn more about the mechanisms at work here, is to study black hole
horizons, starting from the scattering matrix Ansatz.
By compactifying one of the three physical spacial dimensions, the scattering
matrix Ansatz can be exploited more efficiently than before. The algebra of
operators on a black hole horizon allows for a few distinct representations. It
is found that this horizon can be seen as being built up from string bits with
unit lengths, each of which being described by a representation of the SO(2,1)
Lorentz group. We then demonstrate how the holographic principle works for this
case, by constructing the operators corresponding to a field in space-time. The
parameter t turns out to be quantized in Planckian units, divided by the period
R of the compactified dimension.Comment: 12 pages plain tex, 1 figur
Winding Solutions for the two Particle System in 2+1 Gravity
Using a PASCAL program to follow the evolution of two gravitating particles
in 2+1 dimensions we find solutions in which the particles wind around one
another indefinitely. As their center of mass moves `tachyonic' they form a
Gott-pair. To avoid unphysical boundary conditions we consider a large but
closed universe. After the particles have evolved for some time their momenta
have grown very large. In this limit we quantize the model and find that both
the relevant configuration variable and its conjugate momentum become discrete.Comment: 15 pages Latex, 4 eps figure
Vortices and confinement at weak coupling
We discuss the physical picture of thick vortices as the mechanism
responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory.
By introducing appropriate variables on the lattice we distinguish between
thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop
boundaries. We present numerical lattice simulation results that demonstrate
that the full SU(2) string tension at weak coupling arises from the presence of
vortices linked to the Wilson loop. Conversely, excluding linked vortices
eliminates the confining potential. The numerical results are stable under
alternate choice of lattice action as well as a smoothing procedure which
removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe
Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity
In this paper we derive an expression for the conserved Pauli-Lubanski scalar
in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point
particles. We find that it is represented by an extra spatial shift in
addition to the usual identification rule (being a rotation over the cut). For
two particles this invariant is expressed in terms of 't Hooft's phase-space
variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are
added. 6 pages Latex, 4 eps-figure
The mathematical basis for deterministic quantum mechanics
If there exists a classical, i.e. deterministic theory underlying quantum
mechanics, an explanation must be found of the fact that the Hamiltonian, which
is defined to be the operator that generates evolution in time, is bounded from
below. The mechanism that can produce exactly such a constraint is identified
in this paper. It is the fact that not all classical data are registered in the
quantum description. Large sets of values of these data are assumed to be
indistinguishable, forming equivalence classes. It is argued that this should
be attributed to information loss, such as what one might suspect to happen
during the formation and annihilation of virtual black holes.
The nature of the equivalence classes is further elucidated, as it follows
from the positivity of the Hamiltonian. Our world is assumed to consist of a
very large number of subsystems that may be regarded as approximately
independent, or weakly interacting with one another. As long as two (or more)
sectors of our world are treated as being independent, they all must be
demanded to be restricted to positive energy states only. What follows from
these considerations is a unique definition of energy in the quantum system in
terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations
adde
Computation of the Vortex Free Energy in SU(2) Gauge Theory
We present the first measurement of the vortex free-energy order parameter at
weak coupling for SU(2) in simulations employing multihistogram methods. The
result shows that the excitation probability for a sufficiently thick vortex in
the vacuum tends to unity. This is rigorously known to provide a necessary and
sufficient condition for maintaining confinement at weak coupling in SU(N)
gauge theories.Comment: 7 pages, LaTeX with 3 eps figures, minor changes, replacement of Fig.
Supersolids in the Bose-Hubbard Hamiltonian
We use a combination of numeric and analytic techniques to determine the
groun d state phase diagram of the Bose--Hubbard Hamiltonian with longer range
repulsi ve interactions. At half filling one finds superfluidity and an
insulating solid phase. Depending on the relative sizes of near--neighbor and
next near--neighbor interactions, this solid either follows a checkerboard or a
striped pattern. In neither case is there a coexistence with superfluidity.
However upon doping ``supersolid'' phases appear with simultaneous diagonal and
off--diagonal long range order.Comment: 11 pages, Revtex 3.0, 6 figures (upon request
- …