10 research outputs found
Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal
We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles (GLVs) 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack), and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS) and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements) to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by epoxidation of the double bond in the gas phase and sulfation of the epoxy group with sulfuric acid in the particle phase through the same pathway as that proposed for 3-sulfooxy-2-hydroxy-2-methylpropanoic acid from the isoprene-related alpha,beta-unsaturated aldehyde methacrolein in previous work (Lin et al., 2013). The MW 230 organosulfates formed from 2-E-pentenal are tentatively explained by a novel pathway, which bears features of the latter pathway but introduces an additional hydroxyl group at the C-4 position. Evidence is also presented that the MW 214 positional isomer, 2-sulfooxy-3-hydroxypentanoic acid, is unstable and decarboxylates, giving rise to 1-sulfooxy-2-hydroxybutane, a MW 170 organosulfate. Furthermore, evidence is obtained that lactic acid sulfate is generated from 2-E-pentenal. This chemistry could be important on a regional and local scale where GLV emissions such as from grasses and cereal crops are substantial
Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity
The effect of acidity and relative humidity on bulk
isoprene aerosol parameters has been investigated in several studies;
however, few measurements have been conducted on individual aerosol
compounds. The focus of this study has been the examination of the effect of
acidity and relative humidity on secondary organic aerosol (SOA) chemical
composition from isoprene photooxidation in the presence of nitrogen oxide
(NOx). A detailed characterization of SOA at the molecular level was also
investigated. Experiments were conducted in a 14.5 m3 smog chamber
operated in flow mode. Based on a detailed analysis of mass spectra obtained
from gas chromatography鈥搈ass spectrometry of silylated derivatives in
electron impact and chemical ionization modes, ultra-high performance
liquid chromatography/electrospray ionization/time-of-flight high-resolution
mass spectrometry, and collision-induced dissociation in the negative
ionization modes, we characterized not only typical isoprene products but
also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were
tentatively identified on the basis of high-resolution mass spectra. Under
acidic conditions, the major identified compounds include
2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified
include epoxydiols, mono- and dicarboxylic acids, other organic sulfates,
and nitroxy- and nitrosoxy-OS. The contribution of SOA products from
isoprene oxidation to PM2.5 was investigated by analyzing ambient
aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several
organosulfates and nitroxy-OS were detected in both the field and laboratory
samples. The influence of relative humidity on SOA formation was modest in
non-acidic-seed experiments and stronger under acidic seed aerosol. Total
secondary organic carbon decreased with increasing relative humidity under
both acidic and non-acidic conditions. While the yields of some of the
specific organic compounds decreased with increasing relative humidity,
others varied in an indeterminate manner from changes in the relative
humidity.</p
The use of supramolecular structures as protein ligands
Congo red dye as well as other eagerly self-assembling organic molecules which form rod-like or ribbon-like supramolecular structures in water solutions, appears to represent a new class of protein ligands with possible wide-ranging medical applications. Such molecules associate with proteins as integral clusters and preferentially penetrate into areas of low molecular stability. Abnormal, partly unfolded proteins are the main binding target for such ligands, while well packed molecules are generally inaccessible. Of particular interest is the observation that local susceptibility for binding supramolecular ligands may be promoted in some proteins as a consequence of function-derived structural changes, and that such complexation may alter the activity profile of target proteins. Examples are presented in this paper
The bear in Eurasian plant names: Motivations and models
Ethnolinguistic studies are important for understanding an ethnic group's ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors' field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms. Some plants have many and various bear-related phytonyms, while others have only one or two bear names. Features like form and/or surface generated the richest pool of names, while such features as colour seemed to provoke rather few associations with bears. The unevenness of bear phytonyms in the chosen languages was not related to the size of the language nor the present occurence of the Brown Bear in the region. However, this may, at least to certain extent, be related to the amount of the historical ethnolinguistic research done on the selected languages