17 research outputs found
UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening.
BACKGROUND: Lung cancer screening using low-dose CT (LDCT) was shown to reduce lung cancer mortality by 20% in the National Lung Screening Trial. METHODS: The pilot UK Lung Cancer Screening (UKLS) is a randomised controlled trial of LDCT screening for lung cancer versus usual care. A population-based questionnaire was used to identify high-risk individuals. CT screen-detected nodules were managed by a pre-specified protocol. Cost effectiveness was modelled with reference to the National Lung Cancer Screening Trial mortality reduction. RESULTS: 247 354 individuals aged 50-75 years were approached; 30.7% expressed an interest, 8729 (11.5%) were eligible and 4055 were randomised, 2028 into the CT arm (1994 underwent a CT). Forty-two participants (2.1%) had confirmed lung cancer, 34 (1.7%) at baseline and 8 (0.4%) at the 12-month scan. 28/42 (66.7%) had stage I disease, 36/42 (85.7%) had stage I or II disease. 35/42 (83.3%) had surgical resection. 536 subjects had nodules greater than 50 mm(3) or 5 mm diameter and 41/536 were found to have lung cancer. One further cancer was detected by follow-up of nodules between 15 and 50 mm(3) at 12 months. The baseline estimate for the incremental cost-effectiveness ratio of once-only CT screening, under the UKLS protocol, was £8466 per quality adjusted life year gained (CI £5542 to £12 569). CONCLUSIONS: The UKLS pilot trial demonstrated that it is possible to detect lung cancer at an early stage and deliver potentially curative treatment in over 80% of cases. Health economic analysis suggests that the intervention would be cost effective-this needs to be confirmed using data on observed lung cancer mortality reduction. TRIAL REGISTRATION: ISRCTN 78513845
Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis.
Background: The NLST reported a significant 20% reduction in lung cancer mortality with three annual low-dose CT (LDCT) screens and the Dutch-Belgian NELSON trial indicates a similar reduction. We present the results of the UKLS trial. Methods: From October 2011 to February 2013, we randomly allocated 4 055 participants to either a single invitation to screening with LDCT or to no screening (usual care). Eligible participants (aged 50-75) had a risk score (LLPv2) ≥ 4.5% of developing lung cancer over five years. Data were collected on lung cancer cases to 31 December 2019 and deaths to 29 February 2020 through linkage to national registries. The primary outcome was mortality due to lung cancer. We included our results in a random-effects meta-analysis to provide a synthesis of the latest randomised trial evidence. Findings: 1 987 participants in the intervention and 1 981 in the usual care arms were followed for a median of 7.3 years (IQR 7.1-7.6), 86 cancers were diagnosed in the LDCT arm and 75 in the control arm. 30 lung cancer deaths were reported in the screening arm, 46 in the control arm, (relative rate 0.65 [95% CI 0.41-1.02]; p=0.062). The meta-analysis indicated a significant reduction in lung cancer mortality with a pooled overall relative rate of 0.84 (95% CI 0.76-0.92) from nine eligible trials. Interpretation: The UKLS trial of single LDCT indicates a reduction of lung cancer death of similar magnitude to the NELSON and NLST trials and was included in a meta-analysis of nine randomised trials which provides unequivocal support for lung cancer screening in identified risk groups. Funding: NIHR Health Technology Assessment programme; NIHR Policy Research programme; Roy Castle Lung Cancer Foundation
Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis
Background: The NLST reported a significant 20% reduction in lung cancer mortality with three annual low-dose CT (LDCT) screens and the Dutch-Belgian NELSON trial indicates a similar reduction. We present the results of the UKLS trial. Methods: From October 2011 to February 2013, we randomly allocated 4 055 participants to either a single invitation to screening with LDCT or to no screening (usual care). Eligible participants (aged 50-75) had a risk score (LLPv2) ≥ 4.5% of developing lung cancer over five years. Data were collected on lung cancer cases to 31 December 2019 and deaths to 29 February 2020 through linkage to national registries. The primary outcome was mortality due to lung cancer. We included our results in a random-effects meta-analysis to provide a synthesis of the latest randomised trial evidence. Findings: 1 987 participants in the intervention and 1 981 in the usual care arms were followed for a median of 7.3 years (IQR 7.1-7.6), 86 cancers were diagnosed in the LDCT arm and 75 in the control arm. 30 lung cancer deaths were reported in the screening arm, 46 in the control arm, (relative rate 0.65 [95% CI 0.41-1.02]; p=0.062). The meta-analysis indicated a significant reduction in lung cancer mortality with a pooled overall relative rate of 0.84 (95% CI 0.76-0.92) from nine eligible trials. Interpretation: The UKLS trial of single LDCT indicates a reduction of lung cancer death of similar magnitude to the NELSON and NLST trials and was included in a meta-analysis of nine randomised trials which provides unequivocal support for lung cancer screening in identified risk groups. Funding: NIHR Health Technology Assessment programme; NIHR Policy Research programme; Roy Castle Lung Cancer Foundation
Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the UK national cohort
Background—Chronic thromboembolic pulmonary hypertension results from incomplete resolution of pulmonary emboli. Pulmonary endarterectomy (PEA) is potentially curative, but residual pulmonary hypertension following surgery is common and its impact on long-term outcome is poorly understood. We wanted to identify factors correlated with poor long-term outcome after surgery and specifically define clinically relevant residual pulmonary hypertension post-PEA. Methods and Results—Eight hundred eighty consecutive patients (mean age, 57 years) underwent PEA for chronic thromboembolic pulmonary hypertension. Patients routinely underwent detailed reassessment with right heart catheterization and noninvasive testing at 3 to 6 months and annually thereafter with discharge if they were clinically stable at 3 to 5 years and did not require pulmonary vasodilator therapy. Cox regressions were used for survival (time-to-event) analyses. Overall survival was 86%, 84%, 79%, and 72% at 1, 3, 5, and 10 years for the whole cohort and 91% and 90% at 1 and 3 years for the recent half of the cohort. The majority of patient deaths after the perioperative period were not attributable to right ventricular failure (chronic thromboembolic pulmonary hypertension). At reassessment, a mean pulmonary artery pressure of ≥30 mm Hg correlated with the initiation of pulmonary vasodilator therapy post-PEA. A mean pulmonary artery pressure of ≥38 mm Hg and pulmonary vascular resistance ≥425 dynes·s−1·cm−5 at reassessment correlated with worse long-term survival. Conclusions—Our data confirm excellent long-term survival and maintenance of good functional status post-PEA. Hemodynamic assessment 3 to 6 months and 12 months post-PEA allows stratification of patients at higher risk of dying of chronic thromboembolic pulmonary hypertension and identifies a level of residual pulmonary hypertension that may guide the long-term management of patients postsurgery
Tumor necrosis factor-related apoptosis-inducing ligand in T cell development: Sensitivity of human thymocytes
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells
Recommended from our members
Dynamic Risk Stratification of Patient Long-Term Outcome After Pulmonary Endarterectomy: Results From the United Kingdom National Cohort.
BACKGROUND: Chronic thromboembolic pulmonary hypertension results from incomplete resolution of pulmonary emboli. Pulmonary endarterectomy (PEA) is potentially curative, but residual pulmonary hypertension following surgery is common and its impact on long-term outcome is poorly understood. We wanted to identify factors correlated with poor long-term outcome after surgery and specifically define clinically relevant residual pulmonary hypertension post-PEA. METHODS AND RESULTS: Eight hundred eighty consecutive patients (mean age, 57 years) underwent PEA for chronic thromboembolic pulmonary hypertension. Patients routinely underwent detailed reassessment with right heart catheterization and noninvasive testing at 3 to 6 months and annually thereafter with discharge if they were clinically stable at 3 to 5 years and did not require pulmonary vasodilator therapy. Cox regressions were used for survival (time-to-event) analyses. Overall survival was 86%, 84%, 79%, and 72% at 1, 3, 5, and 10 years for the whole cohort and 91% and 90% at 1 and 3 years for the recent half of the cohort. The majority of patient deaths after the perioperative period were not attributable to right ventricular failure (chronic thromboembolic pulmonary hypertension). At reassessment, a mean pulmonary artery pressure of ≥30 mm Hg correlated with the initiation of pulmonary vasodilator therapy post-PEA. A mean pulmonary artery pressure of ≥38 mm Hg and pulmonary vascular resistance ≥425 dynes·s(-1)·cm(-5) at reassessment correlated with worse long-term survival. CONCLUSIONS: Our data confirm excellent long-term survival and maintenance of good functional status post-PEA. Hemodynamic assessment 3 to 6 months and 12 months post-PEA allows stratification of patients at higher risk of dying of chronic thromboembolic pulmonary hypertension and identifies a level of residual pulmonary hypertension that may guide the long-term management of patients postsurgery