287 research outputs found

    Energetics, Particle Capture and Growth Dynamics of Benthic Suspension Feeders

    Get PDF
    Marine benthic communities are dominated by suspension feeders, including those actively pumping water, passively encountering particles, or some combination of the two. The mechanisms by which particles are encountered and retained are now well known for a range of water flow conditions and organism morphologies. Recent research has attempted to quantify the energetic components of suspension feeding, including intake of particles, pumping rates, and metabolic costs of these activities. Energetic models depend strongly on environmental conditions, including temperature, flow speed, and food availability, for example. The effects of these variables have been combined for realistic scenarios using dynamic energy budget (DEB) models, and related models to examine components of fitness (growth, reproduction, population increase), for both existing conditions and for conditions expected for future environments. Detailed examples are provided from recent research on bivalve mollusks, cnidarians including sea anemones and corals, and barnacles. These examples cover several major phyla that are often important components of intertidal and subtidal benthic communities. All common phyla of benthic suspension feeders are discussed, though less extensively, especially given the paucity of energetics studies for some of these phyla

    Thermal adaptation and physiological responses to environmental stress in tunicates

    Get PDF
    Understanding the multifaceted nature of environmental fluctuations is crucial to predicting the physiological adjustments utilised by organisms in resisting or adapting to changes over time. Here we investigate the effects of 2 environmental stressors on tunicates, whose fitness can have important repercussions on the quality of habitat. Specifically, we report respiration rate (RR), clearance rate (CR), and assimilation efficiency (AE) of the ascidian Styela plicata in response to a range of temperatures and varying food availability. Temperature-dependent RR was observed only within a portion of the thermal window of the species. Significant differences in clearance rates were detected among organisms fed with varying algal concentrations, while no significant influence of food concentrations on AE was observed. This plasticity of the physiological rates and the development of ubiquitous mechanisms such as temperature-insensitive aerobic metabolism suggest a competitive advantage of this group. Such knowledge may allow for more accurate predictions of the physiological and evolutionary mechanisms driving current and future distribution of this species

    Investigating marine shallow waters dynamics to explore the role of turbidity on ecological responses

    Get PDF
    The ecological tangible effect of the complex interaction between sediments and water column in shallow waters is represented by turbidity which is a common feature of most aquatic ecosystems: it varies both temporally and spatially; it can cover a huge area and persist for a long period or it can be very localized and temporary. Among many factors able to generate turbidity, wind generated wave action and water mass movements due to tides seem important in causing resuspension of sediments. Although there is much research spent in last decades on this topic and many models to explain the complexity of the wind-water-sediment interaction, some interactive aspects are too site specific and then still poor understood. On the other hand, this interaction involves many physical, chemical and trophic aspects like water flow velocity, turbulence, boundary layer thickness, environmental stresses and, in turn, resuspension, transport, and deposition of particulate matter, mechanical limits to size, larval dispersion, food availability. To get further knowledge on these aspects, we carried out in March 2007 a 5-day-experiment in a Mediterranean shallow area (The Stagnone di Marsala, Western Sicily) by collecting data on wind and water velocities, their directions and the contextual response of the water column in term of turbidity, chlorophyll-a and suspended solids (by ignition). To analyse the interaction, we proceeded step by step. Firstly, we studied data from the two current meters (an acoustic doppler velocimeter 40 ± 2 cm deep, and an electromagnetic current meter 20 ± 2 cm deep). From this data, the water column had the following features: i) during the big semidiurnal tidal transitional phase, the flow field followed a behaviour leading us to hypothesize a logarithmic layer defined by the law of the wall and to obtain friction velocity values with linear regression in good agreement with calculated ones with covariance and TKE method, while ii) during the small tidal transition and at high and low tides, a not-well defined gradient was present (i.e., the mean deviation of the direction of the two water velocities was more than 30° and the flow magnitude at 40 cm was less than that measured at 20 cm implying high values of turbulence intensity). The second step analysed data from multiprobe, ADV, meteorological station and considered turbidity (NTU) as proxy of food availability for consumers. NTU followed a one-day-period and the lower the turbidity, the higher the turbulence (both at 20 and 40 cm)

    Response of captive seabass and seabream as behavioural indicator in aquaculture

    Get PDF
    Welfare of cultivate fish at high-density represents an important concern for modern aquaculture. The behaviour of European seabass (Dicentrarchus labrax) and seabream (Sparus aurata) reared in cages was studied in a fish farm of northern Sardinia (Italy) in autumn 2006 to test whether captive condition had an effect on the movement patterns of these two species.Video images recorded before, during and after the manual feeding distribution allowed us to collect data on different behaviours of captive fish. Thus, behaviours indicating the position of fish in the water column, swimming direction and possible aggressive behaviours (aggression, direction change and collision) showed juveniles and adults of seabass and seabream were overall affected by feeding rhythms and captive overcrowding. Seabream had a major tendency to swim towards the bottom and higher frequency of horizontal swimming and collisions than seabass. The overall behavioural difference between two species was explained in terms of their differences in ecological features in the wild

    Concurrent environmental stressors and jellyfish stings impair caged European sea bass (Dicentrarchus labrax) physiological performances

    Get PDF
    none8siThe increasing frequency of jellyfish outbreaks in coastal areas has led to multiple ecological and socio-economic issues, including mass mortalities of farmed fish. We investigated the sensitivity of the European sea bass (Dicentrarchus labrax), a widely cultured fish in the Mediterranean Sea, to the combined stressors of temperature, hypoxia and stings from the jellyfish Pelagia noctiluca, through measurement of oxygen consumption rates (MO2), critical oxygen levels (PO2crit), and histological analysis of tissue damage. Higher levels of MO2, PO2crit and gill damage in treated fish demonstrated that the synergy of environmental and biotic stressors dramatically impair farmed fish metabolic performances and increase their health vulnerability. As a corollary, in the current scenario of ocean warming, these findings suggest that the combined effects of recurrent hypoxic events and jellyfish blooms in coastal areas might also threaten wild fish populations.openBosch-Belmar, Mar; Giomi, Folco; Rinaldi, Alessandro; Mandich, Alberta; Fuentes, Verónica; Mirto, Simone; Sarà, Gianluca; Piraino, StefanoBosch Belmar, Mar; Giomi, Folco; Rinaldi, Alessandro; Mandich, Alberta; Fuentes, Verónica; Mirto, Simone; Sarà, Gianluca; Piraino, Stefan

    The duality of ocean acidification as a resource and a stressor

    Get PDF
    Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2-driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

    Get PDF
    What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness - as measured by neural signal diversity
    • …
    corecore