24 research outputs found

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Remote Monitoring and Control for an Isolate Prototype Substation Model

    No full text
    The objective of this paper is to monitor the electrical parameters like voltage, current, etc., remotely and display all the obtained real time values for a substation isolate. This paper is furnished to assure the load and electrical system equipment by the activation of relay, whenever the acquired parameters exceed the predefined values. Generally, this Proposed system design makes use of microcontroller, but the prototype of this circuit modelled in Proteus and can be executed by using ATmega 168 microcontroller. When supply is given to the designed hardware, all the sensors start sensing their respective parameters i. e., voltage, current, temperature etc., and modernize all the values on the display. Comparison between the problem-solving time values and the preordained values is continuously carried out by the microcontroller, if any of these values go beyond the pre-defined values, it sends fault alert to the relay, updates it on the screen and sends the same as an SMS through GSM for the rectification

    Fluroscence in-situ hybridization negative PML/RARA: A cryptic puzzle

    No full text
    Acute promyelocytic leukemia (APL) has defined biology and clinical course that is, distinct from the other forms of acute myelogenous leukemia. It may present with potentially devastating coagulopathy and the sensitivity to retinoid differentiating agents, including all-trans retinoic acid and arsenic trioxide, hence a fast and definite diagnosis is imperative. Reciprocal 15, 17 translocation creates a PML/RARA fusion gene on the derivative chromosome 15, which can be detected by various molecular tests such as cytogenetics, fluroscence in-situ hybridization (FISH), reverse transcriptase-polymerase chain reaction. We present here a diagnostically challenging case, both morphologically and immunophenotypically proven to be APL, which was negative for the PML/RARA by FISH

    Forecasting the Oceans: the oceanographic services from the Indian National Centre for ocean information services

    No full text
    This article describes the various services, including the tsunami early warnings, provided by INCOIS for the benefit of society, decision makers, researchers and industry on a day-to-day basis

    Numerical time-dependent Schrödinger description of charge-exchange collisions

    No full text
    An implicit Fast Fourier Transform (FFT) algorithm is implemented to solve the time-dependent Schroedinger equation with application to charge-exchange collisions. Cross sections are calculated for He{sup 2} on H and compared with experiment and other theoretical results. A disagreement between previously published theoretical results is resolved
    corecore