14 research outputs found

    Origin of the high piezoelectric response in PbZr(1-x)TixO3

    Full text link
    High resolution x-ray powder diffraction measurements on poled PbZr(1-x)TixO3 (PZT) ceramic samples close to the rhombohedral-tetragonal phase boundary (the so-called morphotropic phase boundary, MPB) have shown that for both rhombohedral and tetragonal compositions, the piezoelectric elongation of the unit cell does not occur along the polar directions but along those directions associated with the monoclinic distortion. This work provides the first direct evidence for the origin of the very high piezoelectricity in PZT.Comment: 4 pages, 4 EPS figures embedded. More specific title and abstract. To appear in Phys. Rev. Let

    Heterovalent and A-atom effects in A(B'B'')O3 perovskite alloys

    Full text link
    Using first-principles supercell calculations, we have investigated energetic, structural and dielectric properties of three different A(B'B'')O_3 perovskite alloys: Ba(Zn_{1/3}Nb_{2/3})O_3 (BZN), Pb(Zn_{1/3}Nb_{2/3})O_3 (PZN), and Pb(Zr_{1/3}Ti_{2/3})O_3 (PZT). In the homovalent alloy PZT, the energetics are found to be mainly driven by atomic relaxations. In the heterovalent alloys BZN and PZN, however, electrostatic interactions among B' and B'' atoms are found to be very important. These electrostatic interactions are responsible for the stabilization of the observed compositional long-range order in BZN. On the other hand, cell relaxations and the formation of short Pb--O bonds could lead to a destabilization of the same ordered structure in PZN. Finally, comparing the dielectric properties of homovalent and heterovalent alloys, the most dramatic difference arises in connection with the effective charges of the B' atom. We find that the effective charge of Zr in PZT is anomalous, while in BZN and PZN the effective charge of Zn is close to its nominal ionic value.Comment: 7 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_he

    Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3

    Get PDF
    Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48, have revealed a new monoclinic phase in the vicinity of the morphotropic phase boundary (MPB), previously regarded as the the boundary separating the rhombohedral and tetragonal regions of the PZT phase diagram. In the present paper, the stability region of all three phases has been established from high resolution synchrotron x-ray powder diffraction measurements on a series of highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature is increased. A first-order phase transition from tetragonal to rhombohedral symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to the tetragonal-rhombohedral phase boundary, but instead to the boundary between the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides important insight into the close relationship between the monoclinic phase and the striking piezoelectric properties of PZT; in particular, investigations of poled samples have shown that the monoclinic distortion is the origin of the unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde

    Ab initio linear response and frozen phonons for the relaxor PMN (PbMg1/3Nb2/3O3)

    Full text link
    We report first principles density functional studies using plane wave basis sets and pseudopotentials and all electron linear augmented plane wave (LAPW) of the relative stability of various ferroelectric and antiferroelectric supercells of PMN for 1:2 chemical ordering along [111] and [001]. We used linear response with density functional perturbation theory (DFPT) as implemented in the code ABINIT to compute the Born effective charges, electronic dielectric tensors, long wavelength phonon frequencies and LO-TO splittings. The polar response is different for supercells ordered along [111] and [001]. Several polar phonon modes show significant coupling with the macroscopic electric field giving giant LO-TO splittings. For [111] ordering, a polar transverse optic (TO) mode with E symmetry is found to be unstable in the ferroelectric P3m1 structure and the ground state is found to be triclinic. Multiple phonon instabilities of polar modes and their mode couplings provide the pathway for polarization rotation. The Born effective charges in PMN are highly anisotropic and this anisotropy contributes to the observed huge electromechanical coupling in PMN solid solutions.Comment: 34 pages, 6 figures. to appear in PR
    corecore