103 research outputs found

    Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay, Ross Sea)

    Get PDF
    This study focuses on the potential explanations for a Phaeocystis antarctica summer bloom occurred in stratified waters of Terra Nova Bay (TNB) - which is part of the Antarctic Special Protected Area (n.161) in the Ross Sea - trough a multi-parameter correlative approach. Many previous studies have highlighted that water column stratification typically favors diatom dominance compared to the colonial haptophyte P. antarctica, in the Ross Sea, and this correlation has often been used to explain the historic dominance of diatoms in TNB. To explore the spatial and temporal progression of P. antarctica bloom in coastal waters, four stations were sampled three times each between December 31, 2009 and January 13, 2010. Taxonomic and pigment composition of phytoplankton communities, macro-nutrient concentrations and various different indices, all indicated the relative dominance of P. antarctica. Cell abundances revealed that P. antarctica contributed 79% of total cell counts in the upper 25 m and 93% in the lower photic zone. Similarly, a strong correlation was observed between Chl-a and the Hex:Fuco pigment ratio, corroborating the microscopic analyses. Recent studies have shown that iron can trigger colonial P. antarctica blooms. Based on the Hex:Chl-c3 proxy for iron limitation in P. antarctica, we hypothesize that anomalously higher iron fluxes were responsible for the unusual bloom of colonial P. antarctica observed in TNB

    Spatial-Related Community Structure and Dynamics in Phytoplankton of the Ross Sea, Antarctica

    Get PDF
    The Ross Sea exhibits the largest continental shelf and it is considered to be the most productive region in Antarctica, with phytoplankton communities that have so far been considered to be driven by the seasonal dynamics of the polynya, producing the picture of what is considered as the classical Antarctic food web. Nevertheless, the Ross Sea is made up of a complex mosaic of sub-systems, with physical, chemical, and biological features that change on different temporal and spatial scales. Thus, we investigated the phytoplankton community structure of the Ross Sea with a spatial scale, considering the different ecological sub-systems of the region. The total phytoplankton biomass, maximum quantum efficiency (Fv/Fm), size classes, and main functional groups were analyzed in relation to physical–chemical properties of the water column during the austral summer of 2017. Data from our study showed productivity differences between polynyas and other areas, with high values of biomass in Terra Nova Bay (up to 272 mg chl a m–2) and the south-central Ross Sea (up to 177 mg chl a m–2) that contrast with the HNLC nature of the off-shore waters during summer. Diatoms were the dominant group in all the studied subsystems (relative proportion ≥ 50%) except the southern one, where they coexisted with haptophytes with a similar percentage. Additionally, the upper mixed layer depth seemed to influence the level of biomass rather than the dominance of different functional groups. However, relatively high percentages of dinoflagellates (∼30%) were observed in the area near Cape Adare. The temporal variability observed at the repeatedly sampled stations differed among the sub-systems, suggesting the importance of Long-Term Ecological Research (L-TER) sites in monitoring and studying the dynamics of such an important system for the global carbon cycle as the Ross Sea. Our results provide new insights into the spatial distribution and structure of phytoplankton communities, with different sub-systems following alternative pathways for primary production, identifiable by the use of appropriate sampling scales

    The role of platelet ice microalgae in seeding phytoplankton blooms in Terra Nova Bay (Ross Sea, Antarctica): a mesocosm experiment.

    No full text
    The aim of this study was to assess the role of platelet ice microalgal communities in seeding pelagic blooms. Nutrient dynamics, microalgal biomass, photosynthetic parameters, cell densities and species succession were studied in two mesocosm experiments, designed to simulate the transition of microalgal communities from platelet ice habitat to pelagic conditions. The microalgal assemblages were dominated by diatoms, 70% of which were benthic species such as Amphiprora kufferathii, Nitzschia stellata, and Berkeleya adeliensis. Photoacclimation of benthic species was inadequate also at relatively low irradiances. Exceptional growth capacity at different light levels was observed for pelagic species such as Fragilariopsis cylindrus and Chaetoceros spp. which may be important in seeding blooms at ice breakup. Fragilariopsis cylindrus showed high growth rates both at 65 and 10% of incident light and in nutrient replete as well as in nutrient depleted conditions. Five days after inoculation, phytoplankton biomass increased and nutrient concentrations decreased in both light conditions. Nutrient uptake rates were up to 9.10 lmol L-1 d-1 of TIN in the high light tank and 6.18 lmol L-1 d-1 in the low light tank and nutrient depletion in the high light tank occurred 3 days prior to depletion in the low light tank. At nutrient depletion, biomass concentrations were similar in both tanks, 30 and 34 lg Chla L-1

    Spatial patterns of photosynthetic pigments and primary production in a periantarctic ecosystem: the Strait of Magellan.

    No full text
    • …
    corecore