3,064 research outputs found

    Correlated fluctuations in the exciton dynamics and spectroscopy of DNA

    Full text link
    The absorption of ultraviolet light creates excitations in DNA, which subsequently start moving in the helix. Their fate is important for an understanding of photo damage, and is determined by the interplay of electronic couplings between bases and the structure of the DNA environment. We model the effect of dynamical fluctuations in the environment and study correlation, which is present when multiple base pairs interact with the same mode in the environment. We find that the correlations strongly affect the exciton dynamics, and show how they are observed in the decay of the anisotropy as a function of a coherence and a population time in a non-linear optical experiment

    Nonlinear resonance reflection from and transmission through a dense glassy system built up of oriented linear Frenkel chains: two-level models

    Get PDF
    A theoretical study of the resonance optical response of assemblies of oriented short (as compared to an optical wavelength) linear Frenkel chains is carried out using a two-level model. We show that both transmittivity and reflectivity of the film may behave in a bistable fashion and analyze how the effects found depend on the film thickness and on the inhomogeneous width of the exciton optical transition.Comment: 26 pages, 9 figure

    Hard production of a Z boson plus heavy flavor jets at LHC and the intrinsic charm content of a proton

    Full text link
    The cross section of associated production of a Z boson with heavy flavor jets in pppp collisions is calculated using the SHERPA Monte Carlo generator and the analytical combined QCD approach based on kt-factorization at small x and conventional collinear QCD at large x. A satisfactory description of the ATLAS and CMS data on the pTp_T spectra of Z bosons and c-jets in the whole rapidity, y, region is shown. Searching for the intrinsic charm (IC) contribution in these processes, which could be visible at large y > 1.5, we study observables very sensitive to non-zero IC contributions and less affected by theoretical QCD scale uncertainties. One of such observables is the so-called double ratio: the ratio of the differential cross section of Z + c production in the central region of |y| < 1.5 and in the forward region 1.5 < |y| < 2.5, divided by the same ratio for Z + b production. These observables could be more promising for the search of IC at LHC as compared to the observables considered earlier.Comment: 18 pages, 7 figure

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    Constraints on the intrinsic charm content of the proton from recent ATLAS data

    Full text link
    Constraints on the intrinsic charm probability \wccm = P_{{\mathrm{c}\bar \mathrm{c}} / \mathrm{p}} in the proton are obtained for the first time from LHC measurements. The ATLAS Collaboration data for the production of prompt photons, accompanied by a charm-quark jet in pp collisions at s=8\sqrt s = 8 TeV, are used. The upper limit \mbox{\wccm < 1.93~\%} is obtained at the 68~\% confidence level. This constraint is primarily determined from the theoretical scale and systematical experimental uncertainties. Suggestions for reducing these uncertainties are discussed. The implications of intrinsic heavy quarks in the proton for future studies at the LHC are also discussed.Comment: 6 pages, 4 figure

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations

    Get PDF
    We analyze the effects of intersite energy correlations on the linear optical properties of one-dimensional disordered Frenkel exciton systems. The absorption line width and the factor of radiative rate enhancement are studied as a function of the correlation length of the disorder. The absorption line width monotonously approaches the seeding degree of disorder on increasing the correlation length. On the contrary, the factor of radiative rate enhancement shows a non-monotonous trend, indicating a complicated scenario of the exciton localization in correlated systems. The concept of coherently bound molecules is exploited to explain the numerical results, showing good agreement with theory. Some recent experiments are discussed in the light of the present theory.Comment: 18 pages, 3 figues, REVTeX, to appear in Physical Review
    corecore