3,740 research outputs found

    Destroying superfluidity by rotating a Fermi gas at unitarity

    Full text link
    We study the effect of the rotation on a harmonically trapped Fermi gas at zero temperature under the assumption that vortices are not formed. We show that at unitarity the rotation produces a phase separation between a non rotating superfluid (S) core and a rigidly rotating normal (N) gas. The interface between the two phases is characterized by a density discontinuity nN/nS=0.85n_{\rm N}/n_{\rm S}= 0.85, independent of the angular velocity. The depletion of the superfluid and the angular momentum of the rotating configuration are calculated as a function of the angular velocity. The conditions of stability are also discussed and the critical angular velocity for the onset of a spontaneous quadrupole deformation of the interface is evaluated.Comment: 5 pages, 4 figures; comments added; 2 figures changed according to new results; inset Fig.2 corrected; accepted for publication in Phys. Rev. Let

    Dispersion interactions and reactive collisions of ultracold polar molecules

    Full text link
    Progress in ultracold experiments with polar molecules requires a clear understanding of their interactions and reactivity at ultra-low collisional energies. Two important theoretical steps in this process are the characterization of interaction potentials between molecules and the modeling of reactive scattering mechanism. Here, we report on the {\it abinitio} calculation of isotropic and anisotropic van der Waals interaction potentials for polar KRb and RbCs colliding with each other or with ultracold atoms. Based on these potentials and two short-range scattering parameters we then develop a single-channel scattering model with flexible boundary conditions. Our calculations show that at low temperatures (and in absence of an external electric field) the reaction rates between molecules or molecules with atoms have a resonant character as a function of the short-range parameters. We also find that both the isotropic and anisotropic van der Waals coefficients have significant contributions from dipole coupling to excited electronic states. Their values can differ dramatically from those solely obtained from the permanent dipole moment. A comparison with recently obtained reaction rates of fermionic 40^{40}K87^{87}Rb shows that the experimental data can not be explained by a model where the short-range scattering parameters are independent of the relative orbital angular momentum or partial wave.Comment: 15 pages, 12 figure

    Crossover from itinerant to localized magnetic excitations through the metal-insulator transition in NaOsO3_{\text{3}}

    Full text link
    NaOsO3_{\text{3}} undergoes a metal-insulator transition (MIT) at 410 K, concomitant with the onset of antiferromagnetic order. The excitation spectra have been investigated through the MIT by resonant inelastic x-ray scattering (RIXS) at the Os L3_{\text{3}} edge. Low resolution (ΔE\Delta E \sim 300 meV) measurements over a wide range of energies reveal that local electronic excitations do not change appreciably through the MIT. This is consistent with a picture in which structural distortions do not drive the MIT. In contrast, high resolution (ΔE\Delta E \sim 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in \naoso. In particular, the presence of weak correlations in the paramagnetic phase implies a degree of departure from the ideal Slater limit.Comment: Joint submission with Physical Review Letters [Phys. Rev. Lett. 120, 227203 (2018), accepted version at arXiv:1805.03176]. This article includes further discussion about the calculations performed, models used, and so o

    Collective Dipole Bremsstrahlung in Fusion Reactions

    Get PDF
    We estimate the dipole radiation emitted in fusion processes. We show that a classical bremsstrahlung approach can account for both the preequilibrium and the thermal photon emission. We give an absolute evaluation of the pre-equilibrium component due to the charge asymmetry in the entrance channel and we study the energy and mass dependence in order to optimize the observation. This dynamical dipole radiation could be a relevant cooling mechanism in the fusion path. We stress the interest in experiments with the new available radioactive beams.Comment: 4 pages (LATEX), 4 Postscript figures, minor text modification

    Insulating Behavior of a Trapped Ideal Fermi Gas

    Full text link
    We investigate theoretically and experimentally the center-of-mass motion of an ideal Fermi gas in a combined periodic and harmonic potential. We find a crossover from a conducting to an insulating regime as the Fermi energy moves from the first Bloch band into the bandgap of the lattice. The conducting regime is characterized by an oscillation of the cloud about the potential minimum, while in the insulating case the center of mass remains on one side of the potential.Comment: 4 pages, 4 figure

    Multiloop Calculations in the String-Inspired Formalism: The Single Spinor-Loop in QED

    Get PDF
    We use the worldline path-integral approach to the Bern-Kosower formalism for developing a new algorithm for calculation of the sum of all diagrams with one spinor loop and fixed numbers of external and internal photons. The method is based on worldline supersymmetry, and on the construction of generalized worldline Green functions. The two-loop QED β\beta -- function is calculated as an example.Comment: uuencoded ps-file, 20 pages, 2 figures, final revised version to appear in Phys. Rev.

    Metastable Voltage States of Coupled Josephson Junctions

    Full text link
    We investigate a chain of capacitively coupled Josephson junctions in the regime where the charging energy dominates over the Josephson coupling, exploiting the analogy between this system and a multi-dimensional crystal. We find that the current-voltage characteristic of the current-driven chain has a staircase shape, beginning with an (insulating) non-zero voltage plateau at small currents. This behavior differs qualitatively from that of a single junction, which should show Bloch oscillations with vanishing dc voltage. The simplest system where this effect can be observed consists of three grains connected by two junctions. The theory explains the results of recent experiments on Josephson junction arrays.Comment: 5 pages, 4 figures include

    Rf-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment

    Full text link
    We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized as on-chip high-ohmic Cr microstrips. In our samples with relatively large charging energy values Ec > EJ, where EJ is the energy of the Josephson coupling, two transport mechanisms were found to be dominating, both based on discrete tunneling of individual Cooper pairs: Depending on the gate voltage Vg, either sequential tunneling of pairs via the transistor island (in the open state of the transistor around the points Qg = CgVg = e mod(2e), where Cg is the gate capacitance) or their cotunneling through the transistor (for Qg away of these points) was found to prevail in the net current. As the open states of our transistors had been found to be unstable with respect to quasiparticle poisoning, high-frequency gate cycling (at f ~ 1 MHz) was applied to study the sequential tunneling mechanism. A simple model based on the master equation was found to be in a good agreement with the experimental data.Comment: 8 pages, 6 figure

    Reentrant metallic transition at a temperature above Tc at the breakdown of cooperative Jahn-Teller orbital order in perovskite manganites

    Full text link
    We report an interesting reentrant metallic resistivity pattern beyond a characteristic temperature T* which is higher than other such characteristic transition temperatures like T(c)(Curie point), T(N) (Neel point), T(CO) (charge order onset point) or T(OO) (orbital order onset point) in a range of rare-erath perovskite manganites (RE(1-x)A(x)MnO(3); RE = La, Nd, Y; A = Sr, Ca; x = 0.0-0.5). Such a behavior is normally observed in doped manganites with doping level (x) higher than the critical doping level x(c) (= 0.17-0.22) required for the metallic ground state to emerge and hence in a system where cooperative Jahn-Teller orbital order has already undergone a breakdown. However, the observation made in the La(1-x)Ca(x)MnO(3) (x = 0.0-0.5) series turns out to be an exception to this general trend.Comment: 15 pages including 3 figures; pdf onl

    Pseudoclassical description of the massive Dirac particles in odd dimensions

    Get PDF
    A pseudoclassical model is proposed to describe massive Dirac (spin one-half) particles in arbitrary odd dimensions. The quantization of the model reproduces the minimal quantum theory of spinning particles in such dimensions. A dimensional duality between the model proposed and the pseudoclassical description of Weyl particles in even dimensions is discussed.Comment: 12 pages, LaTeX (RevTeX
    corecore