323 research outputs found

    Summary of session on Beam Losses, Halo Generation and collimation

    Get PDF
    The session on beam losses, halo generation and collimation is the first of two sessions of the BEAM07 Workshop, which were devoted to specific CERN-GSI subjects and were meant to be the follow up of last year’s CERNGSI Bilateral Meeting on Collective Effects, which took place on March 30-31, 2006 at the GSI-Darmstadt

    Simulation study of electron cloud build up in the SPS MKD kickers

    Get PDF
    During the 2008 run, an unusual behavior characterizing pressure and temperature increase in some of the dump kickers of the SPS was noticed. In particular, it was observed that 1) the MKDV2 kicker would exhibit maximum heating with 75 ns spaced LHC beams and 2) the pressure rise was specially critical in MKDV1 in presence of 50 ns spaced LHC beams [1]. While the anomalous heating of MKDV2 with 75 ns beams could be tentatively explained by the denser beam current spectrum that would more likely hit one of the kicker impedance peaks, the fast pressure rise in MKDV1 with 50 ns spaced beams was ascribed to a surface effect, namely beam induced multipacting leading to electron cloud formation. This report summarizes a simulation study that was done in order to check whether the electron cloud behavior in the dump kickers could explain the experimental observations

    Electron cloud effects for PS2, SPS (+) and LHC

    Get PDF

    Operational beams for the LHC

    Full text link
    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b⊕\oplus4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.Comment: Submitted for publication in a CERN Yellow Report (YR

    Benchmarking headtail with electron cloud instabilities observed in the LHC

    Full text link
    After a successful scrubbing run in the beginning of 2011, the LHC can be presently operated with high intensity proton beams with 50 ns bunch spacing. However, strong electron cloud effects were observed during machine studies with the nominal beam with 25 ns bunch spacing. In particular, fast transverse instabilities were observed when attempting to inject trains of 48 bunches into the LHC for the first time. An analysis of the turn-by-turn bunch-bybunch data from the transverse damper pick-ups during these injection studies is presented, showing a clear signature of the electron cloud effect. These experimental observations are reproduced using numerical simulations: the electron distribution before each bunch passage is generated with PyECLOUD and used as input for a set of HEADTAIL simulations. This paper describes the simulation method as well as the sensitivity of the results to the initial conditions for the electron build-up. The potential of this type of simulations and their clear limitations on the other hand are discussed.Comment: 7 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Fast Ion Instability in the CLIC Transfer Line and Main LINAC

    Get PDF
    The Fast Ion Instability is believed to be a serious danger for bunch trains propagating in the CLIC electron transfer line and main linac, since it may strongly affect the bunches in the tail of the train if the vacuum pressure is not below a certain threshold. We have developed the FASTION code, which can track electrons through a FODO cell line and takes into account their interactions with the produced (and possibly trapped) ions. We describe how this tool can be used for setting tolerances on the vacuum pressure and for giving specifications for the design of a feedback system

    Observations on background in PHOBOS and related electron cloud simulations

    Get PDF
    N/
    • …
    corecore