188 research outputs found

    Current rectification in a single molecule diode: the role of electrode coupling

    Full text link
    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10^5 A/cm^2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes

    Dynamics of quartz tuning fork force sensors used in scanning probe microscopy

    Full text link
    We have performed an experimental characterization of the dynamics of oscillating quartz tuning forks which are being increasingly used in scanning probe microscopy as force sensors. We show that tuning forks can be described as a system of coupled oscillators. Nevertheless, this description requires the knowledge of the elastic coupling constant between the prongs of the tuning fork, which has not yet been measured. Therefore tuning forks have been usually described within the single oscillator or the weakly coupled oscillators approximation that neglects the coupling between the prongs. We propose three different procedures to measure the elastic coupling constant: an opto-mechanical method, a variation of the Cleveland method and a thermal noise based method. We find that the coupling between the quartz tuning fork prongs has a strong influence on the dynamics and the measured motion is in remarkable agreement with a simple model of coupled harmonic oscillators. The precise determination of the elastic coupling between the prongs of a tuning fork allows to obtain a quantitative relation between the resonance frequency shift and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table

    Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy

    Full text link
    We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even for the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs induced by the sensor-sample force gradient which in turn has an impact on the dissipation through the attachment of the resonator base. This effect may yield a measured dissipation signal that can be different to the one exclusively related to the dissipation between the sensor and the sample. We also find that there is a second order term in addition to the linear relationship between the sensor-sample force gradient and the resonance frequency shift of the tuning fork that is significant even for force gradients usually present in atomic force microscopy which are in the range of tens of N/m.Comment: 9 pages, 3 figures and supplemental informatio

    Observation of a parity oscillation in the conductance of atomic wires

    Get PDF
    Using a scanning tunnel microscope or mechanically controlled break junctions, atomic contacts of Au, Pt and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large amount of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on even or odd numbers of atoms forming the chain. This behaviour is not only present in the monovalent metal Au, as it has been previously predicted, but is also found in the other metals which form chains suggesting it to be a universal feature of atomic wires

    Quantum interference structures in the conductance plateaus of gold nanojunctions

    Get PDF
    The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus' slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.Comment: 4 pages, 4 figure

    Onset of dissipation in ballistic atomic wires

    Get PDF
    Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.Comment: Revtex4, 4 pages, 3 fig

    Calibration of the length of a chain of single gold atoms

    Get PDF
    Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure

    Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors

    Full text link
    We report the fabrication and the characterization of carbon fibre tips for their use in combined scanning tunnelling and force microscopy based on piezoelectric quartz tuning fork force sensors. We find that the use of carbon fibre tips results in a minimum impact on the dynamics of quartz tuning fork force sensors yielding a high quality factor and consequently a high force gradient sensitivity. This high force sensitivity in combination with high electrical conductivity and oxidation resistance of carbon fibre tips make them very convenient for combined and simultaneous scanning tunnelling microscopy and atomic force microscopy measurements. Interestingly, these tips are quite robust against occasionally occurring tip crashes. An electrochemical fabrication procedure to etch the tips is presented that produces a sub-100 nm apex radius in a reproducible way which can yield high resolution images.Comment: 14 pages, 10 figure

    Symmetry and Temperature dependence of the Order parameter in MgB2 from point contact measurements

    Full text link
    We have performed differential conductance versus voltage measurements of Au/MgB2 point contacts. We find that the dominant component in the conductance is due to Andreev reflection. The results are fitted to the theoretical model of BTK for an s-wave symmetry from which we extract the value of the order parameter (Delta) and its temperature dependence. From our results we also obtain a lower experimental bound on the Fermi velocity in MgB2.Comment: 7 pages (Including figure captions) and 4 figure
    corecore