392 research outputs found

    Targeting oncogenic Notch signaling with SERCA inhibitors

    Get PDF
    P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload

    Lenvatinib Targets PDGFR-β Pericytes and Inhibits Synergy with Thyroid Carcinoma Cells: Novel Translational Insights

    Get PDF
    Context: Pericyte populations abundantly express tyrosine kinases (eg, platelet-derived growth factor receptor-β [PDGFR-β]) and impact therapeutic response. Lenvatinib is a clinically available tyrosine kinase inhibitor that also targets PDGFR-β. Duration of therapeutic response was shorter in patients with greater disease burden and metastasis. Patients may develop drug resistance and tumor progression. Objectives: Develop a gene signature of pericyte abundance to assess with tumor aggressiveness and determine both the response of thyroid-derived pericytes to lenvatinib and their synergies with thyroid carcinoma-derived cells. Design: Using a new gene signature, we estimated the relative abundance of pericytes in papillary thyroid carcinoma (PTC) and normal thyroid (NT) TCGA samples. We also cocultured CD90+;PAX8- thyroid-derived pericytes and BRAFWT/V600E-PTC-derived cells to determine effects of coculture on paracrine communications and lenvatinib response. Results: Pericyte abundance is significantly higher in BRAFV600E-PTC with hTERT mutations and copy number alterations compared with NT or BRAFWT-PTC samples, even when data are corrected for clinical-pathologic confounders. We have identified upregulated pathways important for tumor survival, immunomodulation, RNA transcription, cell-cycle regulation, and cholesterol metabolism. Pericyte growth is significantly increased by platelet-derived growth factor-BB, which activates phospho(p)-PDGFR-β, pERK1/2, and pAKT. Lenvatinib strongly inhibits pericyte viability by down-regulating MAPK, pAKT, and p-p70S6-kinase downstream PDGFR-β. Critically, lenvatinib significantly induces higher BRAFWT/V600E-PTC cell death when cocultured with pericytes, as a result of pericyte targeting via PDGFR-β. Conclusions: This is the first thyroid-specific model of lenvatinib therapeutic efficacy against pericyte viability, which disadvantages BRAFWT/V600E-PTC growth. Assessing pericyte abundance in patients with PTC could be essential to selection rationales for appropriate targeted therapy with lenvatinib

    Impact of the rs1024611 polymorphism of ccl2 on the pathophysiology and outcome of primary myelofibrosis

    Get PDF
    Single nucleotide polymorphisms (SNPs) can modify the individual pro-inflammatory background and may therefore have relevant implications in the MPN setting, typified by aberrant cytokine production. In a cohort of 773 primary myelofibrosis (PMF), we determined the contribution of the rs1024611 SNP of CCL2—one of the most potent immunomodulatory chemokines—to the clinical and biological characteristics of the disease, demonstrating that male subjects carrying the homozygous genotype G/G had an increased risk of PMF and that, among PMF patients, the G/G genotype is an independent prognostic factor for reduced overall survival. Functional characterization of the SNP and the CCL2-CCR2 axis in PMF showed that i) homozygous PMF cells are the highest chemokine producers as compared to the other genotypes; ii) PMF CD34+ cells are a selective target of CCL2, since they uniquely express CCR2 (CCL2 receptor); iii) activation of the CCL2-CCR2 axis boosts pro-survival signals induced by driver mutations via Akt phosphorylation; iv) ruxolitinib effectively counteracts CCL2 production and down-regulates CCR2 expression in PMF cells. In conclusion, the identification of the role of the CCL2/CCR2 chemokine system in PMF adds a novel element to the pathophysiological picture of the disease, with clinical and therapeutic implications

    Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy

    Get PDF
    Despite progress in the treatment of acute lymphoblastic leukemia (ALL), T-cell ALL (T-ALL) has limited treatment options, particularly in the setting of relapsed/refractory disease. Using an unbiased genome-scale CRISPR-Cas9 screen we sought to identify pathway dependencies for T-ALL which could be harnessed for therapy development. Disruption of the one-carbon folate, purine and pyrimidine pathways scored as the top metabolic pathways required for T-ALL proliferation. We used a recently developed inhibitor of SHMT1 and SHMT2, RZ-2994, to characterize the effect of inhibiting these enzymes of the one-carbon folate pathway in T-ALL and found that T-ALL cell lines were differentially sensitive to RZ-2994, with the drug inducing a S/G2 cell cycle arrest. The effects of SHMT1/2 inhibition were rescued by formate supplementation. Loss of both SHMT1 and SHMT2 was necessary for impaired growth and cell cycle arrest, with suppression of both SHMT1 and SHMT2 inhibiting leukemia progression in vivo. RZ-2994 also decreased leukemia burden in vivo and remained effective in the setting of methotrexate resistance in vitro. This study highlights the significance of the one-carbon folate pathway in T-ALL and supports further development of SHMT inhibitors for treatment of T-ALL and other cancers

    New somatic TERT promoter variants enhance the Telomerase activity in Glioblastoma

    Get PDF
    The catalytic activity of human Telomerase Reverse Transcriptase (TERT) compensates for the loss of telomere length, eroded during each cell cycle, to ensure a correct division of stem and germinal cells. In human tumors, ectopic TERT reactivation, most frequently due to hotspot mutations in the promoter region (TERTp), i.e. c.1-124 C > T, c.1-146 C > T, confers a proliferative advantage to neoplastic cells. In gliomas, TERTp mutations (TERTpmut) mainly occur in oligodendroglioma and glioblastoma. We screened, for TERTp hotspot mutations, 301 adult patients with gliomas and identified heterozygous mutations in 239 cases: 94% of oligodendroglioma, 85% of glioblastoma, and 37.5% of diffuse/anaplastic astrocytoma. Besides the recurrent c.1-124 C > T and c.1-146 C > T, two cases of glioblastoma harbored novel somatic TERTp variants, which consisted of a tandem duplications of 22 nucleotides, i.e. a TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, both located downstream c.1-124 C > T and c.1-146 C > T. In silico analysis predicted the formation of 119 and 108 new transcription factor's recognition sites for TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, respectively. TERTp duplications (TERTpdup) mainly affected the binding capacity of two transcription factors' families, i.e. the members of the E-twenty-six and the Specificity Protein/Krüppel-Like Factor groups. In fact, these new TERTpdup significantly enhanced the E-twenty-six transcription factors' binding capacity, which is also typically increased by the two c.1-124 C > T/c.1-146 C > T hotspot TERTpmut. On the other hand, they were distinguished by enhanced affinity for the Krüppel proteins. The luciferase assay confirmed that TERTpdup behaved as gain-of-function mutations causing a 2,3-2,5 fold increase of TERT transcription. The present study provides new insights into TERTp mutational spectrum occurring in central nervous system tumors, with the identification of new recurrent somatic gain-of-function mutations, occurring in 0.8% of glioblastoma IDH-wildtype

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive

    Ovarian damage from chemotherapy and current approaches to its protection

    Get PDF
    BACKGROUND: Anti-cancer therapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicle reserve is extremely sensitive to the effects of chemotherapy and radiotherapy. While oocyte, embryo and ovarian cortex cryopreservation can help some women with cancer-induced infertility achieve pregnancy, the development of effective methods to protect ovarian function during chemotherapy would be a significant advantage.OBJECTIVE AND RATIONALE: This paper critically discusses the different damaging effects of the most common chemotherapeutic compounds on the ovary, in particular, the ovarian follicles and the molecular pathways that lead to that damage. The mechanisms through which fertility-protective agents might prevent chemotherapy drug-induced follicle loss are then reviewed.SEARCH METHODS: Articles published in English were searched on PubMed up to March 2019 using the following terms: ovary, fertility preservation, chemotherapy, follicle death, adjuvant therapy, cyclophosphamide, cisplatin, doxorubicin. Inclusion and exclusion criteria were applied to the analysis of the protective agents.OUTCOMES: Recent studies reveal how chemotherapeutic drugs can affect the different cellular components of the ovary, causing rapid depletion of the ovarian follicular reserve. The three most commonly used drugs, cyclophosphamide, cisplatin and doxorubicin, cause premature ovarian insufficiency by inducing death and/or accelerated activation of primordial follicles and increased atresia of growing follicles. They also cause an increase in damage to blood vessels and the stromal compartment and increment inflammation. In the past 20 years, many compounds have been investigated as potential protective agents to counteract these adverse effects. The interactions of recently described fertility-protective agents with these damage pathways are discussed.WIDER IMPLICATIONS: Understanding the mechanisms underlying the action of chemotherapy compounds on the various components of the ovary is essential for the development of efficient and targeted pharmacological therapies that could protect and prolong female fertility. While there are increasing preclinical investigations of potential fertility preserving adjuvants, there remains a lack of approaches that are being developed and tested clinically

    Prevalence and Prognostic Role of IDH Mutations in Acute Myeloid Leukemia: Results of the GIMEMA AML1516 Protocol

    Get PDF
    IDH1/2 mutations are common in acute myeloid leukemia (AML) and represent a therapeutic target. The GIMEMA AML1516 observational protocol was designed to study the prevalence of IDH1/2 mutations and associations with clinico-biological parameters in a cohort of Italian AML patients. We analyzed a cohort of 284 AML consecutive patients at diagnosis, 139 females and 145 males, of a median age of 65 years (range: 19–86). Of these, 38 (14%) harbored IDH1 and 51 (18%) IDH2 mutations. IDH1/2 mutations were significantly associated with WHO PS >2 (p < 0.001) and non-complex karyotype (p = 0.021) when compared to IDH1/2-WT. Furthermore, patients with IDH1 mutations were more frequently NPM1-mutated (p = 0.007) and had a higher platelet count (p = 0.036). At relapse, IDH1/2 mutations were detected in 6 (25%) patients. As per the outcome, 60.5% of IDH1/2-mutated patients achieved complete remission; overall survival and event-free survival at 2 years were 44.5% and 36.1%, respectively: these rates were similar to IDH1/2-WT. In IDH1/2-mutated patients, high WBC proved to be an independent prognostic factor for survival. In conclusion, the GIMEMA AML1516 confirms that IDH1/2 mutations are frequently detected at diagnosis and underlines the importance of recognizing IDH1/2-mutated cases up-front to offer the most appropriate therapeutic strategy, given the availability of IDH1/2 inhibitors

    A phase II, open-label, multicentre study to evaluate the immunogenicity and safety of an adjuvanted prepandemic (H5N1) influenza vaccine in healthy Japanese adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Promising clinical data and significant antigen-sparing have been demonstrated for a pandemic H5N1 influenza split-virion vaccine adjuvanted with AS03<sub>A</sub>, an α-tocopherol-containing oil-in-water emulsion-based Adjuvant System. Although studies using this formulation have been reported, there have been no data for Japanese populations. This study therefore aimed to assess the immunogenicity and tolerability of a prepandemic (H5N1) influenza vaccine adjuvanted with AS03<sub>A </sub>in Japanese adults.</p> <p>Methods</p> <p>This open-label, single-group study was conducted at two centres in Japan in healthy Japanese males and females aged 20-64 years (n = 100). Subjects received two doses of vaccine, containing 3.75 μg haemagglutinin of the A/Indonesia/5/2005-like IBCDC-RG2 Clade 2.1 (H5N1) strain adjuvanted with AS03<sub>A</sub>, 21 days apart. The primary endpoint evaluated the humoral immune response in terms of H5N1 haemagglutination inhibition (HI) antibody titres against the vaccine strain (Clade 2.1) 21 days after the second dose. Ninety five percent confidence intervals for geometric mean titres, seroprotection, seroconversion and seropositivity rates were calculated. Secondary and exploratory endpoints included the assessment of the humoral response in terms of neutralising antibody titres, the response against additional H5N1 strains (Clade 1 and Clade 2.2), as well as the evaluation of safety and reactogenicity.</p> <p>Results</p> <p>Robust immune responses were elicited after two doses of the prepandemic influenza vaccine adjuvanted with AS03<sub>A</sub>. Overall, vaccine HI seroconversion rates and seroprotection rates were 91% 21 days after the second vaccination. This fulfilled all regulatory acceptance criteria for the vaccine-homologous HI antibody level. A substantial cross-reactive humoral immune response was also observed against the virus strains A/turkey/Turkey/1/2005 (Clade 2.2) and A/Vietnam/1194/2004 (Clade 1) after the second vaccine administration. A marked post-vaccination response in terms of neutralising antibody titres was demonstrated and persistence of the immune response was observed 6 months after the first dose. The vaccine was generally well tolerated and there were no serious adverse events reported.</p> <p>Conclusions</p> <p>The H5N1 candidate vaccine adjuvanted with AS03<sub>A </sub>elicited a strong and persistent immune response against the vaccine strain A/Indonesia/5/2005 in Japanese adults. Vaccination with this formulation demonstrated a clinically acceptable reactogenicity profile and did not raise any safety concerns in this population.</p> <p>Trial registration</p> <p>Clinicaltrials.gov NCT00742885</p
    • …
    corecore