40 research outputs found

    Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (HBK) Cort,s and oil palm (Elaeis guineensis Jacq.)

    Get PDF
    IATE Axe 4 : Biotechnologie microbienne et enzymatique des lipides et des agropolymèresWe chose an Elaeis interspecific pseudo-backcross of first generation (E. oleifera x E. guineensis) x E. guineensis to identify quantitative trait loci (QTLs) for fatty acid composition of palm oil. A dense microsatellite linkage map of 362 loci spanned 1.485 cM, representing the 16 pairs of homologous chromosomes in the Elaeis genus from which we traced segregating alleles from both E. oleifera and E. guineensis grandparents. The relative linear orders of mapped loci suggested the probable absence of chromosome rearrangements between the E. oleifera and E. guineensis genomes. A total of 19 QTL associated to the palm oil fatty acid composition were evidenced. The QTL positions and the species origin as well as the estimated effects of the QTL marker alleles were in coherence with the knowledge of the oil biosynthesis pathway in plants and with the individual phenotypic correlations between the traits. The mapping of chosen Elaeis key genes related to oleic acid C18:1, using intra-gene SNPs, supported several QTLs underlying notably FATA and SAD enzymes. The high number of hyper-variable SSR loci of known relative linear orders and the QTL information make these resources valuable for such mapping study in other Elaeis breeding materials

    Effects of marital/dependency status on reenlistment behavior of second-term enlisted females.

    Get PDF
    This thesis investigates the relationship of reenlistment decisions of second-term enlisted women in the military to their marital and dependent status, using individual-level data from the 1985 DoD Survey of Officer and Enlisted Personnel. Actual reenlistment status (December 1988) of each survey respondent was merged with the data set. Logit analysis was used to estimate the likelihood of a respondent choosing to reenlist given her set of individual characteristics. Separate logit models were estimated for the following groups of second-term personnel: single women without children, single women with children, married women without children, and married women with children. Certain variables affected all groups similarly (pay grade, minority status, perception of civilian job alternatives). Others exerted differential impact on subgroups (job satisfaction, traditionality of job). Results illustrated differential reenlistment behavior based upon the presence of children. Results may be used to target reenlistment incentives for specified marital/dependent status groups.http://archive.org/details/effectsofmarital00edwaLieutenant, United States NavyApproved for public release; distribution is unlimited

    Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D

    Get PDF
    [EN] Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 degrees C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.This work was funded by the Spanish Government (Consolider Ingenio 2010-MULTICAT (CSD2009-00050) and MAT2014-52085-C2-1-P) and by the Generalitat Valenciana (Prometeo). The Severo Ochoa Program (SEV-2012-0267) is gratefully acknowledged. L.L. thanks ITQ for a contract. The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The HAADF-HRSTEM works were conducted in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA)-Universidad de Zaragoza (Spain), a Spanish ICTS National Facility. Some of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3). R.A. also acknowledges funding from the Spanish Ministerio de Economia y Competitividad (FIS2013-46159-C3-3-P) and the European Union Horizon 2020 research and innovation programme under the Marie Sldodowska-Curie grant agreement No. 642742.Liu, L.; Díaz Morales, UM.; Arenal, R.; Agostini, G.; Concepción Heydorn, P.; Corma Canós, A. (2017). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials. 16(1):132-138. https://doi.org/10.1038/NMAT4757S132138161Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Ann. Rev. Chem. Bio. Eng. 3, 545–574 (2012).Gates, B. C. Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).Rivallan, M. et al. Platinum sintering on H-ZSM-5 followed by chemometrics of CO adsorption and 2D pressure-jump IR spectroscopy of adsorbed species. Angew. Chem. Int. Ed. 49, 785–789 (2010).Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).Philippaerts, A. et al. Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite. Angew. Chem. Int. Ed. 50, 3947–3949 (2011).Kim, J., Kim, W., Seo, Y., Kim, J.-C. & Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J. Catalys. 301, 187–197 (2013).Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015).Kulkarni, A., Lobo-Lapidus, R. J. & Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46, 5997–6015 (2010).Guzman, J. & Gates, B. C. Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans. 1, 3303–3318 (2003).Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994).Camblor, M. A. et al. A new microporous polymorph of silica isomorphous to zeolite MCM-22. Chem. Mater. 8, 2415–2417 (1996).Hyotanishi, M., Isomura, Y., Yamamoto, H., Kawasaki, H. & Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 47, 5750–5752 (2011).Duchesne, P. N. & Zhang, P. Local structure of fluorescent platinum nanoclusters. Nanoscale 4, 4199–4205 (2012).Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).Yacamán, M. J., Santiago, U. & Mejía-Rosales, S. in Advanced Transmission Electron Microscopy: Applications to Nanomaterials (eds Francis, L., Mayoral, A. & Arenal, R.) 1–29 (Springer, 2015).Jena, P., Khanna, S. N. & Rao, B. K. Physics and Chemistry of Finite Systems: From Clusters to Crystals (Springer, 1992).Yamasaki, J. et al. Ultramicroscopy 151, 224–231 (2015).Sohlberg, K., Pennycook, T. J., Zhoud, W. & Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 17, 3982–4006 (2015).Aydin, C., Lu, J., Browning, N. D. & Gates, B. C. A ‘smart’ catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem. Int. Ed. 51, 5929–5934 (2012).Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).Addou, R. et al. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 × 1. ACS Nano 8, 6321–6333 (2014).Jung, U. et al. Comparative in operando studies in heterogeneous catalysis: atomic and electronic structural features in the hydrogenation of ethylene over supported Pd and Pt catalysts. ACS Catal. 5, 1539–1551 (2015).Agostini, G. et al. Effect of different face centered cubic nanoparticle distributions on particle size and surface area determination: a theoretical study. J. Phys. Chem. C 118, 4085–4094 (2014).Alexeev, O. & Gates, B. C. EXAFS characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top. Catal. 10, 273–293 (2000).Chakraborty, I., Bhuin, R. G., Bhat, S. & Pradeep, T. Blue emitting undecaplatinum clusters. Nanoscale 6, 8561–8564 (2014).Zheng, J., Nicovich, P. R. & Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 58, 409–431 (2007).Okrut, A. et al. Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst. Nat. Nanotech. 9, 459–465 (2014).Zhou, C. et al. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study. J. Phys. Chem. C 111, 12773–12778 (2007).De La Cruz, C. & Sheppard, N. An exploration of the surfaces of some Pt/SiO2 catalysts using CO as an infrared spectroscopic probe. Spectrochim. Acta A 50, 271–285 (1994).Klünker, C., Balden, M., Lehwald, S. & Daum, W. CO stretching vibrations on Pt(111) and Pt(110) studied by sum frequency generation. Surf. Sci. 360, 104–111 (1996).Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).Levitas, V. I. & Samani, K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2, 284 (2011).Jiang, H., Moon, K.-s., Dong, H., Hua, F. & Wong, C. P. Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006).Nanda, K. K., Kruis, F. E. & Fissan, H. Evaporation of free PbS nanoparticles: evidence of the Kelvin effect. Phys. Rev. Lett. 89, 256103 (2002).Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotech. 5, 506–510 (2010).Koch, C. Determination of Core Structure Periodicity and Point Defect Density along Dislocations PhD thesis, Univ. Arizona (2002).Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015).Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)

    Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers

    Get PDF
    Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod

    Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites

    No full text
    International audienceNitrous oxide decomposition and temperature programmed desorption tests on Fe-ZSM-5 and Fe-silicalite show that the catalytic conversion mechanism of N2O into N-2 and O-2 over Fe-zeolites is more complex than expected. Nitrogen oxides are formed as byproducts of the catalytic process with the major part consisting in NO2 species adsorbed on the iron sites. FTIR spectroscopy of adsorbed N2O, NO, and NO2 has been used to investigate the structure and environment of the iron active species of the Fe-MFI catalysts before and after atomic oxygen deposition. The interactions of NO and N2O probes on activated Fe-ZSM-5 have evidenced two families of mononuclear Fe(II) centers (FeA and FeB) differing in the coordination state of Fe. N2O also interacts with Bronsted sites of Fe-ZSM-5 via hydrogen bonding. This type of interaction is nearly absent in Fe-silicalite. Polynuclear species (clusters) and iron oxide particles, whose concentrations are strongly influenced by the iron content and by the preparation methods are also present. When oxidized samples (by N2O) are considered, the ability of FeA and FeB centers to adsorb N2O and NO is strongly depressed. On the contrary, the surface chemistry of iron particles is not appreciably influenced. These results represent an indirect proof of the preferential presence of adsorbed oxygen on isolated Fe centers. NO titration of oxidized Fe-ZSM-5 results in the formation of a complex network of interplaying neutral (NO, NO2, N2O4) and ionic species (NO+, NO2-, NO3-). The cooperation of sites between Bronsted and iron active sites is demonstrated. The last observation is fully confirmed by the experiments performed using NO2 probe that titrates both Bronsted and iron sites. On the basis of the comparison of catalytic results of N2O decomposition and of spectroscopic results concerning the titration of surface sites with N2O, NO, and NO2 obtained on the same samples (which form the main scope of the paper), it clearly emerges that mononuclear sites characterized by lowest coordination are the most active in N2O decomposition. Under the adopted conditions, low or negligible activity is shown by FexOy clusters and Fe2O3 particles

    Pd-Supported Catalysts: Evolution of Support Porous Texture along Pd Deposition and Alkali-Metal Doping

    No full text
    Adsorption of N-2 at 77 K and scanning electron microscopy have been used to measure the changes in the support morphology, at nano- and microscale level, along the processes involved in the preparation of a supported Pd catalyst: Pd deposition, doping, and thermal treatments. Among the investigated supports, viz., activated carbons, gamma-Al2O3, SiO2, and SiO2-Al2O3 (SA), the SA one was found particularly sensitive to these processes, as a result of its high plasticity and reactivity. Involved processes can be summarized as follows: (i) During the I'd deposition, the support itself is partially dissolved and removed as a result of both the basicity of the precipitating agent and the final washing. (ii) When the undoped sample is thermally treated up to 823 K, only modest phenomena are observed. (iii) Upon doping with potassium carbonate, the support dissolution continues, and the greater the carbonate concentration, the greater the dissolution extent. In this case the dissolved material is not removed, but reprecipitates (partially outside the pores), during the subsequent drying at 393 K. (iv) When doped samples are thermally treated, the reaction between carbonate and support causes the mobilization of the support itself, with sintering phenomena that can reach the total collapse of the porous structure. The starting temperature of the pore collapse decreases with increasing potassium carbonate concentration. The modification of the support influences, directly or indirectly, the surface properties and the availability of Pd particles that can be doped or even covered by materials from support and made more or less accessible or even inaccessible by pore narrowing, widening, or blocking

    Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies

    No full text
    INGENIERIE+FRMThe temperature prevailing in the catalyst bed of three different IR spectroscopic reaction cells was assessed by means of thermocouples, an optical pyrometer and reaction rate measurements. One of the cells was a custom-made transmission FT-IR cell for use with thin wafers and the two others were commercial Harrick and Spectra-Tech diffuse reflectance FT-IR (DRIFTS) cells used for the analysis of powdered samples. The rate of CO methanation measured over a 16 wt% Ni/alumina catalyst was used as a means to derive the effective temperature prevailing in the IR cells from that existing in a traditional (non-spectroscopic) reactor having a well-controlled temperature. The sample bed of these three IR cells exhibited a significantly lower temperature than that of the corresponding measure thermocouple, which was yet located in or close to the sample bed. The comparison of Arrhenius plots enabled us to determine a temperature correction valid over a large temperature range. The use of an optical pyrometer was assessed with a view to determining the temperature of the surface of the powdered beds and that at the centre of the wafer. The optical pyrometer proved useful in the case of the catalyst powder, which behaved as a black non-reflecting body. In contrast, the temperature reading was inaccurate in the case of the pressed wafer, probably due to the shiny surface and minute thickness of the wafer, which led to a significant portion of the IR radiation of the surroundings being reflected by and transmitted through the wafer. The optical pyrometer data showed that the temperature of the surface of the powdered beds was significantly lower than that of the bulk of the bed, and that the total flow rate and composition did not affect this value. This work emphasises that the effective bed temperature in spectroscopic cells can be significantly different from that given by measure thermocouples, even when located in the vicinity of the sample, but that the calibration curves derived from rate measurements can be used to overcome this problem

    In Situ Cobalt Speciation on γ‑Al<sub>2</sub>O<sub>3</sub> in the Presence of Carboxylate Ligands in Supported Catalyst Preparation

    No full text
    Molecular-scale understanding of metal impregnation on a porous oxide support is a key step toward the development of optimized (and cost-effective) catalytic materials with enhanced activity, selectivity and time on stream stability. In the present contribution in situ ATR-IR and ex situ spectroscopic measurements (XPS, UV–vis DRS) have been performed in order to describe the influence of three different oxygenated organic molecules (acetate, citrate, and nitrilotriacetate) on cobalt sorption on a conventional γ-alumina support. Variation of the preparation conditions has been done by changing the pH of adsorption, and the nature of additives (organic molecules) as well as their concentrations. Different sorption mechanisms and cobalt speciation have been evidenced during in situ ATR-IR measurement through comparison with reference spectra of pure Co and organic additives solutions. More specifically, citrate and nitriloacetate additives leads to the formation of ternary surface complexes (alumina–ligand–cobalt) preventing Co precipitation at high pH and leading to a higher Co dispersion at the impregnation step than for the ligand-free system. However, acetate does not sorb on alumina and cannot prevent Co precipitation. However, addition of acetate in the impregnation solution leads to an increase in the amount of cobalt adsorbed at high pH but induces a strong decrease of cobalt sorption at lower pH
    corecore