2,400 research outputs found
Flexible high-voltage supply for experimental electron microscope
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms
The M33 Variable Star Population Revealed by Spitzer
We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera
(IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly
a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the
full dataset contains 37,650 stars. The stars have luminosities characteristic
of the asymptotic giant branch and can be separated into oxygen-rich and
carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors
indicate that over 80% of the stars detected at 8.0 microns have dust shells.
Photometric comparison of epochs using conservative criteria yields a catalog
of 2,923 variable stars. These variables are most likely long-period variables
amidst an evolved stellar population. At least one-third of the identified
carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full
resolution figures and electronic table
Ice chemistry in massive Young Stellar Objects: the role of metallicity
We present the comparison of the three most important ice constituents
(water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs),
in environments of different metallicities: the Galaxy, the Large Magellanic
Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We
present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained
with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all
Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice
abundances are enhanced in the LMC when compared to high-luminosity Galactic
YSOs. Based on the fact that both species appear to be enhanced in a consistent
way, this effect is unlikely to be the result of enhanced CO2 production in
hotter YSO envelopes as previously thought. Instead we propose that this
results from a reduced water column density in the envelopes of LMC YSOs, a
direct consequence of both the stronger UV radiation field and the reduced
dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions
are harsher, and we observe a reduction in CO2 column density. Furthermore, the
low gas-phase CO density and higher dust temperature in YSO envelopes in the
SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with
further observations.Comment: accepted by MNRAS Letters; 5 pages, 3 figures, 1 tabl
Dual Bethe-Salpeter equation for the multi-orbital lattice susceptibility within dynamical mean-field theory
Dynamical mean-field theory describes the impact of strong local correlation
effects in many-electron systems. While the single-particle spectral function
is directly obtained within the formalism, two-particle susceptibilities can
also be obtained by solving the Bethe-Salpeter equation. The solution requires
handling infinite matrices in Matsubara frequency space. This is commonly
treated using a finite frequency cut-off, resulting in slow linear convergence.
We show that decomposing the two-particle response in local and non-local
contributions enables a reformulation of the Bethe-Salpeter equation inspired
by the dual boson formalism. The re-formulation has a drastically improved
cubic convergence with respect to the frequency cut-off, facilitating the
calculation of susceptibilities in multi-orbital systems considerably. The dual
Bethe-Salpeter equation uses the fully reducible vertex which is free from
vertex divergences. We benchmark the approach on several systems including the
spin susceptibility of strontium ruthenate SrRuO, a strongly correlated
Hund's metal with three active orbitals. We propose the dual Bethe-Salpeter
equation as a new standard for calculating two-particle response within
dynamical mean-field theory
Larmor precession in strongly correlated itinerant electron systems
Many-electron systems undergo a collective Larmor precession in the presence
of a magnetic field. In a paramagnetic metal, the resulting spin wave provides
insight into the correlation effects generated by the electron-electron
interaction. Here, we use dynamical mean-field theory to investigate the
collective Larmor precession in the strongly correlated regime, where dynamical
correlation effects such as quasiparticle lifetimes and non-quasiparticle
states are essential. We study the spin excitation spectrum, which includes a
dispersive Larmor mode as well as electron-hole excitations that lead to Stoner
damping. We also extract the momentum-resolved damping of slow spin waves. The
accurate theoretical description of these phenomena relies on the Ward
identity, which guarantees a precise cancellation of self-energy and vertex
corrections at long wavelengths. Our findings pave the way towards a better
understanding of spin wave damping in correlated materials
Stellar Populations and Mass-Loss in M15: A Spitzer Detection of Dust in the Intra-Cluster Medium
We present Spitzer Space Telescope IRAC and MIPS observations of the galactic
globular cluster M15 (NGC 7078), one of the most metal-poor clusters with a
[Fe/H] = -2.4. Our Spitzer images reveal a population of dusty red giants near
the cluster center, a previously detected planetary nebula (PN) designated
K648, and a possible detection of the intra-cluster medium (ICM) arising from
mass loss episodes from the evolved stellar population. Our analysis suggests 9
(+/-2) x 10^-4 solar masses of dust is present in the core of M15, and this
material has accumulated over a period of approximately 10^6 years, a timescale
ten times shorter than the last galactic plane crossing event. We also present
Spitzer IRS follow up observations of K648, including the detection of the
[NeII] 12.81 micron line, and discuss abundances derived from infrared fine
structure lines.Comment: Accepted for publication in AJ. 20 pages, 10 figures, 6 tables. Full
resolution versions of figures 1, 5, 7, and 8 are available in a PDF version
of this manuscript at http://ir.astro.umn.edu/~mboyer/ms_060906.pd
Solid-phase C60 in the peculiar binary XX Oph?
We present infrared spectra of the binary XX Oph obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The data show some evidence for the presence of solid C60– the first detection of C60 in the solid phase – together with the well-known ‘unidentified infrared’ emission features. We suggest that, in the case of XX Oph, the C60 is located close to the hot component, and that in general it is preferentially excited by stars having effective temperatures in the range 15 000–30 000 K. C60 may be common in circumstellar environments, but unnoticed in the absence of a suitable exciting source
Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly
Satellite cells (SC) are essential for skeletal muscle growth and repair. As sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of 8 elderly (E:76+/-1y) and 8 young (Y:20+/-1y) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type specific SC content (i.e. pax7-positive SC) on serial muscle cross-sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in the E versus the Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in the E versus the Y (0.044+/-0.003 vs 0.080+/-0.007; P<0.01). In addition, in the type II fibers the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in the E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging. Key words: skeletal muscle, sarcopenia, muscle stem cells, atrophy, metabolism
Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy
We have observed five carbon-rich AGB stars in the Fornax dwarf spheroidal
(dSph) galaxy, using the Infrared Spectrometer on board the Spitzer Space
Telescope. The stars were selected from a near-infrared survey of Fornax and
include the three reddest stars, with presumably the highest mass-loss rates,
in that galaxy. Such carbon stars probably belong to the intermediate-age
population (2-8 Gyr old and metallicity of [Fe/H] -1) of Fornax. The primary
aim of this paper is to investigate mass-loss rate, as a function of luminosity
and metallicity, by comparing AGB stars in several galaxies with different
metallicities. The spectra of three stars are fitted with a radiative transfer
model. We find that mass-loss rates of these three stars are 4-7x10^-6 Msun
yr-1. The other two stars have mass-loss rates below 1.3x10^-6 Msun yr-1. We
find no evidence that these rates depend on metallicity, although we do suggest
that the gas-to-dust ratio could be higher than at solar metallicity, in the
range 240 to 800. The C2H2 bands are stronger at lower metallicity because of
the higher C/O ratio. In contrast, the SiC fraction is reduced at low
metallicity, due to low silicon abundance. The total mass-loss rate from all
known carbon-rich AGB stars into the interstellar medium of this galaxy is of
the order of 2x10^-5 Msun yr-1. This is much lower than that of the dwarf
irregular galaxy WLM, which has a similar visual luminosity and metallicity.
The difference is attributed to the younger stellar population of WLM. The
suppressed gas-return rate to the ISM accentuates the difference between the
relatively gas-rich dwarf irregular and the gas-poor dwarf spheroidal galaxies.
Our study will be useful to constrain gas and dust recycling processes in low
metallicity galaxies.Comment: MNRAS accepte
- …