157 research outputs found

    Screening of charged singularities of random fields

    Full text link
    Many types of point singularity have a topological index, or 'charge', associated with them. For example the phase of a complex field depending on two variables can either increase or decrease on making a clockwise circuit around a simple zero, enabling the zeros to be assigned charges of plus or minus one. In random fields we can define a correlation function for the charge-weighted density of singularities. In many types of random fields, this correlation function satisfies an identity which shows that the singularities 'screen' each other perfectly: a positive singularity is surrounded by an excess of concentration of negatives which exactly cancel its charge, and vice-versa. This paper gives a simple and widely applicable derivation of this result. A counterexample where screening is incomplete is also exhibited.Comment: 12 pages, no figures. Minor revision of manuscript submitted to J. Phys. A, August 200

    Microscopic mechanism for the 1/8 magnetization plateau in SrCu_2(BO_3)_2

    Full text link
    The frustrated quantum magnet SrCu_2(BO_3)_2 shows a remarkably rich phase diagram in an external magnetic field including a sequence of magnetization plateaux. The by far experimentally most studied and most prominent magnetization plateau is the 1/8 plateau. Theoretically, one expects that this material is well described by the Shastry-Sutherland model. But recent microscopic calculations indicate that the 1/8 plateau is energetically not favored. Here we report on a very simple microscopic mechanism which naturally leads to a 1/8 plateau for realistic values of the magnetic exchange constants. We show that the 1/8 plateau with a diamond unit cell benefits most compared to other plateau structures from quantum fluctuations which to a large part are induced by Dzyaloshinskii-Moriya interactions. Physically, such couplings result in kinetic terms in an effective hardcore boson description leading to a renormalization of the energy of the different plateaux structures which we treat in this work on the mean-field level. The stability of the resulting plateaux are discussed. Furthermore, our results indicate a series of stripe structures above 1/8 and a stable magnetization plateau at 1/6. Most qualitative aspects of our microscopic theory agree well with a recently formulated phenomenological theory for the experimental data of SrCu_2(BO_3)_2. Interestingly, our calculations point to a rather large ratio of the magnetic couplings in the Shastry-Sutherland model such that non-perturbative effects become essential for the understanding of the frustrated quantum magnet SrCu_2(BO_3)_2.Comment: 24 pages, 24 figure

    Distributions of absolute central moments for random walk surfaces

    Full text link
    We study periodic Brownian paths, wrapped around the surface of a cylinder. One characteristic of such a path is its width square, w2w^2, defined as its variance. Though the average of w2w^2 over all possible paths is well known, its full distribution function was investigated only recently. Generalising w2w^2 to w(N)w^{(N)}, defined as the NN-th power of the {\it magnitude} of the deviations of the path from its mean, we show that the distribution functions of these also scale and obtain the asymptotic behaviour for both large and small w(N)w^{(N)}

    Critical holes in undercooled wetting layers

    Full text link
    The profile of a critical hole in an undercooled wetting layer is determined by the saddle-point equation of a standard interface Hamiltonian supported by convenient boundary conditions. It is shown that this saddle-point equation can be mapped onto an autonomous dynamical system in a three-dimensional phase space. The corresponding flux has a polynomial form and in general displays four fixed points, each with different stability properties. On the basis of this picture we derive the thermodynamic behaviour of critical holes in three different nucleation regimes of the phase diagram.Comment: 18 pages, LaTeX, 6 figures Postscript, submitted to J. Phys.

    Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T

    Full text link
    The magnetization process of the orthogonal-dimer antiferromagnet SrCu2(BO3)2 is investigated in high magnetic fields of up to 118 T. A 1/2 plateau is clearly observed in the field range 84 to 108 T in addition to 1/8, 1/4 and 1/3 plateaux at lower fields. Using a combination of state-of-the-art numerical simulations, the main features of the high-field magnetization, a 1/2 plateau of width 24 T, a 1/3 plateau of width 34 T, and no 2/5 plateau, are shown to agree quantitatively with the Shastry-Sutherland model if the ratio of inter- to intra-dimer exchange interactions J'/J=0.63. It is further predicted that the intermediate phase between the 1/3 and 1/2 plateau is not uniform but consists of a 1/3 supersolid followed by a 2/5 supersolid and possibly a domain-wall phase, with a reentrance into the 1/3 supersolid above the 1/2 plateau.Comment: 5 pages + 10 pages supplemental materia

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    Geometric characterization of nodal domains: the area-to-perimeter ratio

    Full text link
    In an attempt to characterize the distribution of forms and shapes of nodal domains in wave functions, we define a geometric parameter - the ratio ρ\rho between the area of a domain and its perimeter, measured in units of the wavelength 1/E1/\sqrt{E}. We show that the distribution function P(ρ)P(\rho) can distinguish between domains in which the classical dynamics is regular or chaotic. For separable surfaces, we compute the limiting distribution, and show that it is supported by an interval, which is independent of the properties of the surface. In systems which are chaotic, or in random-waves, the area-to-perimeter distribution has substantially different features which we study numerically. We compare the features of the distribution for chaotic wave functions with the predictions of the percolation model to find agreement, but only for nodal domains which are big with respect to the wavelength scale. This work is also closely related to, and provides a new point of view on isoperimetric inequalities.Comment: 22 pages, 11 figure

    Orientational order on curved surfaces - the high temperature region

    Full text link
    We study orientational order, subject to thermal fluctuations, on a fixed curved surface. We derive, in particular, the average density of zeros of Gaussian distributed vector fields on a closed Riemannian manifold. Results are compared with the density of disclination charges obtained from a Coulomb gas model. Our model describes the disordered state of two dimensional objects with orientational degrees of freedom, such as vector ordering in Langmuir monolayers and lipid bilayers above the hexatic to fluid transition.Comment: final version, 13 Pages, 2 figures, uses iopart.cl

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure
    corecore