18,226 research outputs found
Analytic study of Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics
Using Sturm-Liouville (SL) eigenvalue problem, we investigate several
properties of holographic s-wave superconductors in Gauss-Bonnet gravity with
Born-Infeld electrodynamics in the probe limit. Our analytic scheme has been
found to be in good agreement with the numerical results. From our analysis it
is quite evident that the scalar hair formation at low temperatures is indeed
affected by both the Gauss-Bonnet as well as the Born-Infeld coupling
parameters. We also compute the critical exponent associated with the
condensation near the critical temperature. The value of the critical exponent
thus obtained indeed suggests a universal mean field behavior.Comment: 9 pages, Latex, minor modifications, To appear in JHE
Water use patterns of forage cultivars in the North China Plain
Water shortage is the primary limiting factor for crop production and long-term agricultural sustainability of the North China Plain. Forage cultivation emerged recently in this region. A fiveryear field experiment studies were conducted at Yucheng Integrated Experiment Station to quantify the water requirement and water use efficiency of seven forage varieties under climate variability, that is five annuals, i.e., ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass (Sorghum biolor × Sorghum Sudanense c.v.), ensilage corn (Zea mays L.), prince's feather (Amaranthus paniculatus L.) and two perennials alfalfa (Medicago sativa L.) and cup plant (Silphium perfoliatum L.). Average ET for five annual varieties ranged from 333 to 371 mm, significantly lower than that of the perennial varieties. ET of alfalfa is 789 mm, which is higher than that of cup plant. Ryegrass and triticale need 1.5 to 2.0 mm water per day, while others 2.9-4.4 mm. Ensilage corn and Sorghum hybrid sudangrass performed better as their irrigation demand is smaller in the dry seasons than others. Ryegrass needs 281 mm irrigation requirement, which is higher than triticale in dry years. Prince's feather is sensitive to climate change and it can be selected when rainfall is greater than 592.9 mm in the growing season. Mean WUE for prince's feather is 20 Kg ha -1 mm -1, for ensilage corn is 41 Kg ha -1 mm -1 and others is close to 26 Kg ha -1 mm -1. Our experiments indicate that excessive rain will reduce the production of alfalfae. The results of this experiment have implications for researchers and policy makers with water management strategy of forage cultivars and it also very useful in addressing climate change impact and adaptation issues
The Friedmann equation in modified entropy-area relation from entropy force
According to the formal holographic principle, a modification to the
assumption of holographic principle in Verlinder's investigation of entropy
force is obtained. A more precise relation between entropy and area in the
holographic system is proposed. With the entropy corrections to the
area-relation, we derivate Newton's laws and Einstein equation with a static
spherically symmetric holographic screen. Furthermore we derived the correction
terms to the modified Friedmann equation of the FRW universe starting from the
holographic principle and the Debye model.Comment: Mod. Phys. Lett. A26, 489-500 (2011
Ferromagnetism in 2p Light Element-Doped II-oxide and III-nitride Semiconductors
II-oxide and III-nitride semiconductors doped by nonmagnetic 2p light
elements are investigated as potential dilute magnetic semiconductors (DMS).
Based on our first-principle calculations, nitrogen doped ZnO, carbon doped
ZnO, and carbon doped AlN are predicted to be ferromagnetic. The ferromagnetism
of such DMS materials can be attributed to a p-d exchange-like p-p coupling
interaction which is derived from the similar symmetry and wave function
between the impurity (p-like t_2) and valence (p) states. We also propose a
co-doping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance
the ferromagnetic coupling and to increase the solubility and activity
A Note on Gauss-Bonnet Holographic Superconductors
We present an analytic treatment near the phase transition for the critical
temperature of (3+1)-dimensional holographic superconductors in
Einstein-Gauss-Bonnet gravity with backreaction. We find that the backreaction
makes the critical temperature of the superconductor decrease and condensation
harder. This is consistent with previous numerical results.Comment: 6 pages, typos corrected, references added, published versio
- …