34 research outputs found

    Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Big sagebrush (<it>Artemisia tridentata</it>) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush.</p> <p>Results</p> <p>cDNA of <it>A. tridentata </it>sspp. <it>tridentata </it>and <it>vaseyana </it>were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. <it>tridentata </it>and 20,250 contigs in ssp. <it>vaseyana</it>. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e<sup>-15</sup>). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. <it>wyomingensis</it>) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. <it>tridentata </it>and <it>vaseyana </it>identified in the combined assembly were also polymorphic within the two geographically distant ssp. <it>wyomingensis </it>samples.</p> <p>Conclusion</p> <p>We have produced a large EST dataset for <it>Artemisia tridentata</it>, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. <it>wyomingensis </it>via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches.</p

    Scrub typhus ecology: a systematic review of Orientia in vectors and hosts

    Get PDF
    Abstract Scrub typhus, caused by Orientia tsutsugamushi, is an important and neglected vector-borne zoonotic disease with an expanding known distribution. The ecology of the disease is complex and poorly understood, impairing discussion of public health interventions. To highlight what we know and the themes of our ignorance, we conducted a systematic review of all studies investigating the pathogen in vectors and non-human hosts. A total of 276 articles in 7 languages were included, with 793 study sites across 30 countries. There was no time restriction for article inclusion, with the oldest published in 1924. Seventy-six potential vector species and 234 vertebrate host species were tested, accounting for over one million trombiculid mites (‘chiggers’) and 83,000 vertebrates. The proportion of O. tsutsugamushi positivity was recorded for different categories of laboratory test and host species. Vector and host collection sites were geocoded and mapped. Ecological data associated with these sites were summarised. A further 145 articles encompassing general themes of scrub typhus ecology were reviewed. These topics range from the life-cycle to transmission, habitats, seasonality and human risks. Important gaps in our understanding are highlighted together with possible tools to begin to unravel these. Many of the data reported are highly variable and inconsistent and minimum data reporting standards are proposed. With more recent reports of human Orientia sp. infection in the Middle East and South America and enormous advances in research technology over recent decades, this comprehensive review provides a detailed summary of work investigating this pathogen in vectors and non-human hosts and updates current understanding of the complex ecology of scrub typhus. A better understanding of scrub typhus ecology has important relevance to ongoing research into improving diagnostics, developing vaccines and identifying useful public health interventions to reduce the burden of the disease.</jats:p

    Epitaxial stannate pyrochlore thin films: Limitations of cation stoichiometry and electron doping

    Get PDF
    We have studied the growth of epitaxial films of stannate pyrochlores with a general formula A2Sn2O7 (A = La and Y) and find that it is possible to incorporate ∼ 25% excess of the A-site constituent; in contrast, any tin excess is expelled. We unravel the defect chemistry, allowing for the incorporation of excess A-site species and the mechanism behind the tin expulsion. An A-site surplus is manifested by a shift in the film diffraction peaks, and the expulsion of tin is apparent from the surface morphology of the film. In an attempt to increase La2Sn2O7 conductivity through n-type doping, substantial quantities of tin have been substituted by antimony while maintaining good film quality. The sample remained insulating as explained by first-principles computations, showing that both the oxygen vacancy and antimonyon-tin substitutional defects are deep. Similar conclusions are drawn on Y2Sn2O7. An alternative n-type dopant, fluorine on oxygen, is shallow according to computations and more likely to lead to electrical conductivity. The bandgaps of stoichiometric La2Sn2O7 and Y2Sn2O7 films were determined by spectroscopic ellipsometry to be 4.2 eV and 4.48 eV, respectively
    corecore