16 research outputs found
Geometric representation of interval exchange maps over algebraic number fields
We consider the restriction of interval exchange transformations to algebraic
number fields, which leads to maps on lattices. We characterize
renormalizability arithmetically, and study its relationships with a
geometrical quantity that we call the drift vector. We exhibit some examples of
renormalizable interval exchange maps with zero and non-zero drift vector, and
carry out some investigations of their properties. In particular, we look for
evidence of the finite decomposition property: each lattice is the union of
finitely many orbits.Comment: 34 pages, 8 postscript figure
Numerical analysis for a discontinuous rotation of the torus
In this paper, we study a class of piecewise rotations on the square. While few theoretical results are known about them, we numerically compute box-counting dimensions, correlation dimensions and complexity of the symbolic language produced by the system. Our results seem to confirm a conjecture that the fractal dimension of the exceptional set is two, as well as indicate that the dynamics on it is not ergodic. We also explore a relationship between the piecewise rotations and discretized rotations on lattices Z(2n)
Unexpected low expression of platelet fibrinogen receptor in patients with chronic myeloproliferative neoplasms: how does it change with aspirin?
This study was conducted to evaluate the expression of fibrinogen receptors on platelets of Philadelphia-negative chronic myeloproliferative neoplasm (MPN) patients. We collected blood samples from 40 consecutive MPN patients and healthy volunteers. We performed flow cytometry analysis of P-selectin expression and integrin beta-3, activation of glycoprotein (GP) IIb/IIIa and fibrinogen receptor exposure (PAC-1 binding). Surprisingly, we found a very low PAC-1 binding capacity in MPN patients; however, the expression of PAC-1 was almost completely recovered with aspirin intake. We hypothesize that the hypercoagulable states observed in MPN patients could depend on a primarily plasma-driven impairment of fibrin turnover and thrombin generation
Making Treatment-Free Remission (TFR) Easier in Chronic Myeloid Leukemia: Fact-Checking and Practical Management Tools
In chronic-phase chronic myeloid leukemia (CML), tyrosine kinase inhibitors (TKIs) are the standard of care, and treatment-free remission (TFR) following the achievement of a stable deep molecular response (DMR) has become, alongside survival, a primary goal for virtually all patients. The GIMEMA CML working party recently suggested that the possibility of achieving TFR cannot be denied to any patient, and proposed specific treatment policies according to the patient’s age and risk. However, other international recommendations (including 2020 ELN recommendations) are more focused on survival and provide less detailed suggestions on how to choose first and subsequent lines of treatment. Consequently, some grey areas remain. After literature review, a panel of Italian experts discussed the following controversial issues: (1) early prediction of DMR and TFR: female sex, non-high disease risk score, e14a2 transcript and early MR achievement have been associated with stable DMR, but the lack of these criteria is not sufficient to exclude any patient from TFR; (2) criteria for first and subsequent line therapy choice: a number of patient and drug characteristics have been proposed to make a personalized decision; (3) monitoring of residual disease after discontinuation: after the first 6 months, the frequency of molecular tests can be reduced based on MR4.5 persistence and short turnaround time; (4) prognosis of TFR: therapy and DMR duration are important to predict TFR; although immunological control of CML plays a role, no immunological predictive phenotype is currently available. This guidance is intended as a practical tool to support physicians in decision making