3,196 research outputs found
New results from an extensive aging test on bakelite Resistive Plate Chambers
We present recent results of an extensive aging test, performed at the CERN
Gamma Irradiation Facility on two single--gap RPC prototypes, developed for the
LHCb Muon System. With a method based on a model describing the behaviour of an
RPC under high particle flux conditions, we have periodically measured the
electrode resistance R of the two RPC prototypes over three years: we observe a
large spontaneous increase of R with time, from the initial value of about 2
MOhm to more than 250 MOhm. A corresponding degradation of the RPC rate
capabilities, from more than 3 kHz/cm2 to less than 0.15 kHz/cm2 is also found.Comment: 6 pages, 7 figures, presented at Siena 2002, 8th Topical Seminar on
Innovative Particle and Radiation Detectors 21-24 October 2002, Siena, Ital
First results from an aging test of a prototype RPC for the LHCb Muon System
Recent results of an aging test performed at the CERN Gamma Irradiation
Facility on a single--gap RPC prototype developed for the LHCb Muon System are
presented. The results are based on an accumulated charge of about 0.45
C/cm, corresponding to about 4 years of LHCb running at the highest
background rate. The performance of the chamber has been studied under several
photon flux values exploiting a muon beam. A degradation of the rate capability
above 1 kHz/cm is observed, which can be correlated to a sizeable increase
of resistivity of the chamber plates. An increase of the chamber dark current
is also observed. The chamber performance is found to fulfill the LHCb
operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging
Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200
Preliminary results of an aging test of RPC chambers for the LHCb Muon System
The preliminary results of an aging test performed at the CERN Gamma
Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon
System are presented. The results are based on an accumulated charge density of
0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest
background rate. We observe a rise in the dark current and noise measured with
source off. The current drawn with source on steadily decreased, possibly
indicating an increase of resistivity of the chamber plates. The performance of
the chamber, studied with a muon beam under several photon flux values, is
found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive
Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga
Measurement of the time resolution of the installed muon chambers with the 2008 cosmic runs
One of the main goals of the LHCb muon system commissioning is to access the detector performance and identify possible misbehaviors in the installed chambers: this is partially possible using cosmic ray muons tracked through the detector. In this note we focus on the measurement of the time resolution of the whole installed detector (M2-M5 stations) using the 2008 commissioning data. Results are compared with the expected performances
EuroGammaS gamma characterisation system for ELI-NP-GBS: The nuclear resonance scattering technique
A Gamma Beam Characterisation System has been designed by the EuroGammaS association for thecommissioning and development of the Extreme Light Infrastructure-Nuclear Physics Gamma Beam System(ELI-NP-GBS) to be installed in Magurele, Romania. The characterisation system consists of four elements: aCompton spectrometer, a sampling calorimeter, a nuclear resonant scattering spectrometer (NRSS) and a beamprofile imager. In this paper, the nuclear resonant scattering spectrometer system, designed to perform anabsolute energy calibration for the gamma beam, will be describe
Performance of the LHCb muon system with cosmic rays
The LHCb Muon system performance is presented using cosmic ray events
collected in 2009. These events allowed to test and optimize the detector
configuration before the LHC start. The space and time alignment and the
measurement of chamber efficiency, time resolution and cluster size are
described in detail. The results are in agreement with the expected detector
performance.Comment: Submitted to JINST and accepte
Transverse momentum spectra of identified particles in high energy collisions with statistical hadronisation model
A detailed analysis is performed of transverse momentum spectra of several
identified hadrons in high energy collisions within the framework of the
statistical model of hadronisation. The effect of the decay chain following
hadron generation is accurately taken into account. The considered
centre-of-mass energies range from ~ 10 to 30 GeV in hadronic collisions (pi+
p, pp and Kp) and from ~ 15 to 45 GeV in e+e- collisions. A clear consistency
is found between the temperature parameter extracted from the present analysis
and that obtained from fits to average hadron multiplicities in the same
collision systems. This finding indicates that in the hadronisation, the
production of different particle species and their momentum spectra are two
closely related phenomenons governed by one parameter.Comment: Talk given by F. Becattini in "Correlations and Fluctuations 2000",
12 pp., 11 figure
A Laser Based Instrument for MWPC Wire Tension Measurement
A fast and simple method for the measurement of the mechanical tension of wires of Multi Wires Proportional Chambers (MWPCs) is described. The system is based on commercial components and does not require any electrical connection to the wires or electric or magnetic field. It has been developed for the quality control of MWPCs of the Muon Detector of the LHCb experiment in construction at CERN. The system allows a measurement of the wire tension with a precision better than 0.5% within 3-4 seconds per wir
Performance of the Muon Identification at LHCb
The performance of the muon identification in LHCb is extracted from data
using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and
D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on
the pattern of hits in the muon chambers. A momentum dependent binary
requirement is used to reduce the probability of hadrons to be misidentified as
muons to the level of 1%, keeping the muon efficiency in the range of 95-98%.
As further refinement, a likelihood is built for the muon and non-muon
hypotheses. Adding a requirement on this likelihood that provides a total muon
efficiency at the level of 93%, the hadron misidentification rates are below
0.6%.Comment: 17 pages, 10 figure
- …