18,202 research outputs found
Probing magnetic order in ultracold lattice gases
A forthcoming challenge in ultracold lattice gases is the simulation of
quantum magnetism. That involves both the preparation of the lattice atomic gas
in the desired spin state and the probing of the state. Here we demonstrate how
a probing scheme based on atom-light interfaces gives access to the order
parameters of nontrivial quantum magnetic phases, allowing us to characterize
univocally strongly correlated magnetic systems produced in ultracold gases.
This method, which is also nondemolishing, yields spatially resolved spin
correlations and can be applied to bosons or fermions. As a proof of principle,
we apply this method to detect the complete phase diagram displayed by a chain
of (rotationally invariant) spin-1 bosons.Comment: published versio
METing SUSY on the Z peak
Recently the ATLAS experiment announced a 3 excess at the Z-peak
consisting of 29 pairs of leptons together with two or more jets, GeV and GeV, to be compared with
expected lepton pairs in the Standard Model. No excess outside the Z-peak was
observed. By trying to explain this signal with SUSY we find that only
relatively light gluinos, TeV, together with a
heavy neutralino NLSP of GeV decaying
predominantly to Z-boson plus a light gravitino, such that nearly every gluino
produces at least one Z-boson in its decay chain, could reproduce the excess.
We construct an explicit general gauge mediation model able to reproduce the
observed signal overcoming all the experimental limits. Needless to say, more
sophisticated models could also reproduce the signal, however, any model would
have to exhibit the following features, light gluinos, or heavy particles with
a strong production cross-section, producing at least one Z-boson in its decay
chain. The implications of our findings for the Run II at LHC with the scaling
on the Z peak, as well as for the direct search of gluinos and other SUSY
particles, are pointed out.Comment: 24 pages, 17 figures, simulation improved, Checkmate analysis added,
new benchmark point included. Typos corrected, conclusions unchange
Dynamics of Entanglement Transfer Through Multipartite Dissipative Systems
We study the dynamics of entanglement transfer in a system composed of two
initially correlated three-level atoms, each located in a cavity interacting
with its own reservoir. Instead of tracing out reservoir modes to describe the
dynamics using the master equation approach, we consider explicitly the
dynamics of the reservoirs. In this situation, we show that the entanglement is
completely transferred from atoms to reservoirs. Although the cavities mediate
this entanglement transfer, we show that under certain conditions, no
entanglement is found in cavities throughout the dynamics. Considering the
entanglement dynamics of interacting and non-interacting bipartite subsystems,
we found time windows where the entanglement can only flow through interacting
subsystems, depending on the system parameters.Comment: 8 pages, 11 figures, publishe in Physical Review
A Study of Cool White Dwarfs in the Sloan Digital Sky Survey Data Release 12
In this work we study white dwarfs where to compare the differences in the
cooling of DAs and non-DAs and their formation channels. Our final sample is
composed by nearly DAs and more than non-DAs that are
simultaneously in the SDSS DR12 spectroscopic database and in the \textit{Gaia}
survey DR2. We present the mass distribution for DAs, DBs and DCs, where it is
found that the DCs are more massive than DAs and
DBs on average. Also we present the photometric effective temperature
distribution for each spectral type and the distance distribution for DAs and
non-DAs. In addition, we study the ratio of non-DAs to DAs as a function of
effective temperature. We find that this ratio is around for
effective temperature above and increases by a factor
of five for effective temperature cooler than . If we assume
that the increase of non-DA stars between to
is due to convective dilution, per cent of
the DAs should turn into non-DAs to explain the observed ratio. Our
determination of the mass distribution of DCs also agrees with the theory that
convective dilution and mixing are more likely to occur in massive white
dwarfs, which supports evolutionary models and observations suggesting that
higher mass white dwarfs have thinner hydrogen layers.Comment: 9 pages, 10 figures, accepted by MNRA
Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models
We present the first asteroseismological study for 42 massive ZZ Ceti stars
based on a large set of fully evolutionary carbonoxygen core DA white dwarf
models characterized by a detailed and consistent chemical inner profile for
the core and the envelope. Our sample comprise all the ZZ Ceti stars with
spectroscopic stellar masses between 0.72 and known to date.
The asteroseismological analysis of a set of 42 stars gives the possibility to
study the ensemble properties of the massive pulsating white dwarf stars with
carbonoxygen cores, in particular the thickness of the hydrogen envelope and
the stellar mass. A significant fraction of stars in our sample have stellar
mass high enough as to crystallize at the effective temperatures of the ZZ Ceti
instability strip, which enables us to study the effects of crystallization on
the pulsation properties of these stars. Our results show that the phase
diagram presented in Horowitz et al. (2010) seems to be a good representation
of the crystallization process inside white dwarf stars, in agreement with the
results from white dwarf luminosity function in globular clusters.Comment: 58 pages, 11 figures, accepted in Ap
- …