3 research outputs found

    THE EFFECT OF TILT ANGLE AND MASS FLOW RATE ON THE PERFORMANCE OF A PARABOLIC TROUGH SOLAR CONCENTRATOR VIA EXPERIMENTATION

    Get PDF
    Solar energy is widely regarded as a very promising alternative energy source due to its potential to satisfy a substantial portion of global energy demand. The efficacy of a solar concentrator is contingent upon operational and weather factors. This paper presents an experimental evaluation of the effect of tilt angle and mass flow rate on the effectiveness of a parabolic trough solar concentrator The parabolic trough solar collector was subjected to experimental testing in LAUTECH's Ogbomoso engineering facility. It has a collector length of 2.1m, an aperture width of 1.2m, an adjustable rim angle of 75o, 90o, and 105o, a focal length of 30 cm, a 10-liter storage reservoir with varying flow rates of  0.0004 m3/s, 0.0008m3/s, and 0.0012m3/s. The temperatures were measured with a 12-channel temperature recorder (SD data logger), while the solar radiation was measured with a solar meter and water was used as a working fluid. Thermal performance analysis was conducted to ascertain the impact of tilt angle, mass flow rate, and weather conditions on the solar concentrator's effectiveness. The results indicate that the system has a greater thermal efficacy with weather elements such as solar intensity and ambient temperature at higher mass flow rates and a 90o tilt angle. This concentrator aids the energy industry by decreasing reliance on electricity and pollution from fossil fuels, thereby minimizing environmental and health issues. Keywords: Alternative Energy, Concentrator, Effectiveness, Environment, Tilt Angle, DOI: 10.7176/APTA/88-01 Publication date: February 28th 202

    Shares and Class Rights in Nigeria's Company Law: An Appraisal

    No full text
    corecore