365 research outputs found
Overview over the neutral gas pressures in Wendelstein 7-X during divertor operation under boronized wall conditions
During the first test divertor campaign of the stellarator experiment Wendelstein 7-X (Pedersen et al 2022 Nucl. Fusion 62 042022), OP1.2b, 13 neutral gas pressure gauges collected data in different locations in the plasma vessel, enabling a detailed analysis of the neutral gas pressures, the compression ratios and the particle exhaust rates via the turbomolecular pumps in the different magnetic field configurations. In Wendelstein 7-X, the edge magnetic islands are intersected by the divertor target plates and used to create a plasma-wall interface. As the number and position of the magnetic islands varies in different magnetic field configurations, the position of the strike line on the target plates and thus the neutral gas pressure in the subdivertor differs between the configurations. Neutral gas pressures on the order of few 10â4 mbar were measured in the subdivertor region. The highest neutral gas pressure of mbar was obtained in the so-called high iota configuration featuring four edge magnetic islands per cross section. The neutral particle flux through the pumping gaps into the subdivertor volume was provided by EMC3-EIRENE simulations and allowed to analyze the relation between the particle flux entering the subdivertor and the pressure distribution in the subdivertor. Finite element simulations in ANSYS provide a detailed picture of the pressure distribution in the subdivertor volume and agree with the neutral gas pressure measurements in the subdivertor in the standard configuration featuring an island chain of 5 edge magnetic islands. Surprisingly high neutral gas pressures that were not predicted by the simulation were measured in the subdivertor region away from the main strike line for discharges in the most used magnetic configuration, the standard configuration. While the pressure ratio between the two sections of the subdivertor volume, the low and high iota section is 0.06 in high iota configuration, a ratio of 2â5 was obtained in the other configurations, indicating significant particle loads and exhaust rates on the high iota section of the subdivertor in magnetic configurations with the main strike line on the low iota divertor targets
Distributions of deposits and hydrogen on the upper and lower TDUs3 target elements of Wendelstein 7-X
Distributions of deposits and hydrogen (H) on the graphite divertor target elements TM4h4 and TM3v5 in the test divertor units 3 (TDUs3) of Wendelstein 7-X (W7-X) are studied. The TM4h4 and TM3v5 are located at the magnetically symmetric positions in the upper and lower divertor. The microstructure of the deposition layer is characterized by a transmission electron microscope (TEM) combined with a focused ion beam (FIB). Metallic deposits such as iron (Fe), molybdenum (Mo), chromium (Cr) are detected in the deposition layer by energy-dispersive x-ray spectroscopy (EDS). The depth-resolved distribution patterns of boron (B) and metallic deposits on upper and lower horizontal (h) divertor target elements TDUs3-TM4h4 as well as upper and lower vertical (v) divertor target elements TDUs3-TM3v5 are clarified by glow discharge optical emission spectrometry (GDOES). Results for both TDUs3-TM4h4 and TDUs3-TM3v5 show that the B deposition regions exhibit higher H retention due to the co-deposition with deposits. On the other hand, up-down asymmetries in B deposition caused by particle drift exist on both TDUs3-TM4h4 and TDUs3-TM3v5. The B deposition amount on upper TDUs3-TM4h4 is 40% smaller than that on lower TDUs3-TM4h4. While for the vertical target elements, the B deposition amount on upper TDUs3-TM3v5 is 35% larger than that on lower TDUs3-TM3v5. Meanwhile, a shift of around 3 cm in B deposition peaks is observed on upper and lower TDUs3-TM4h4 and TDUs3-TM3v5. Results of numerical simulation of carbon deposition/erosion profiles on the target elements using ERO2.0 code and power flux measured by infrared cameras are shown and compared with the above mentioned B profiles
The evolution of the bound particle reservoir in Wendelstein 7-X and its influence on plasma control
Engaging in NDRTs affects driversâ responses and glance patterns after silent automation failures
The aim of this study was to understand driver responses to âsilentâ failures in automated driving, where automation failed during a simulator drive, without a take-over warning. The effect of a visual non-driving related task (NDRT) and a road-based vigilance task presented driversâ take-over response and visual attention was also investigated. Currently, automated driving systems face a number of limitations that require control to be handed back to the driver. Much of the research to date has focused on explicit take-over requests (ToRs) and shows that drivers struggle to resume control safely, exacerbated by disengagement from the driving task, for instance, due to the presence of NDRTs. However, little is known about whether, and how, drivers will respond to more subtle automation failures that come without a warning, and how this is affected by NDRT engagement. Thirty participants drove a simulated automated drive in two conditions, which had 6 silent automation failures each (3 on a Curve, 3 in a Straight), with no ToRs. In one condition, drivers were required to constantly monitor the road, which was enforced by a road-based vigilance task (VMS Only). In the other, drivers performed an additional visual NDRT, requiring them to divide their attention (VMSâŻ+âŻArrows). Results showed that, in both conditions, all drivers eventually detected and responded to all silent automation failures. However, engaging in an additional NDRT during automation resulted in significantly more lane excursions and longer take-over times. Adding a visual NDRT not only changed the distribution of driversâ visual attention before and after the failure but also how they divided their attention between information on the road environment and the humanâmachine interface, which provided information on automation status. These results provide support for how driver monitoring systems may be used to detect driversâ visual attention to the driving task and surroundings, and used as a tool for encouraging driver intervention, when required
Dentin dysplasia type I: a challenge for treatment with dental implants
<p>Abstract</p> <p>Background</p> <p>Dentin dysplasia type I is characterized by a defect of dentin development with clinical normal appearance of the permanent teeth but no or only rudimentary root formation. Early loss of all teeth and concomitant underdevelopment of the jaws are challenging for successful treatment with dental implants.</p> <p>Methods</p> <p>A combination of sinus lifting and onlay bone augmentation based on treatment planning using stereolithographic templates was used in a patient with dentin dysplasia type I to rehabilitate the masticatory function.</p> <p>Results</p> <p>(i) a predisposition for an increased and accelerated bone resorption was observed in our patient, (ii) bone augmentation was successful using a mixture of allogenic graft material with autogenous bone preventing fast bone resorption, (iii) surgical planning, based on stereolithographic models and surgical templates, facilitated the accurate placement of dental implants.</p> <p>Conclusion</p> <p>Bony augmentation and elaborate treatment planning is helpful for oral rehabilitation of patients with dentin dysplasia type I.</p
Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation
Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and Ă-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin
- âŠ