23 research outputs found
Using Bayesian networks to guide the assessment of new evidence in an appeal case.
When new forensic evidence becomes available after a conviction there is no systematic framework to help lawyers to determine whether it raises sufficient questions about the verdict in order to launch an appeal. This paper presents such a framework driven by a recent case, in which a defendant was convicted primarily on the basis of audio evidence, but where subsequent analysis of the evidence revealed additional sounds that were not considered during the trial. The framework is intended to overcome the gap between what is generally known from scientific analyses and what is hypothesized in a legal setting. It is based on Bayesian networks (BNs) which have the potential to be a structured and understandable way to evaluate the evidence in a specific case context. However, BN methods suffered a setback with regards to the use in court due to the confusing way they have been used in some legal cases in the past. To address this concern, we show the extent to which the reasoning and decisions within the particular case can be made explicit and transparent. The BN approach enables us to clearly define the relevant propositions and evidence, and uses sensitivity analysis to assess the impact of the evidence under different assumptions. The results show that such a framework is suitable to identify information that is currently missing, yet clearly crucial for a valid and complete reasoning process. Furthermore, a method is provided whereby BNs can serve as a guide to not only reason with incomplete evidence in forensic cases, but also identify very specific research questions that should be addressed to extend the evidence base and solve similar issues in the future.This research was funded by the Engineering and Physical Sciences Research Council of the UK through the Security Science Doctoral Research Training Centre (UCL SECReT) based at University College London (EP/G037264/1), and the European Research Council (ERC-2013-AdG339182-BAYES_KNOWLEDGE)
Case Based Representation and Retrieval with Time Dependent Features
Abstract. The temporal dimension of the knowledge embedded in cases has often been neglected or oversimplified in Case Based Reasoning sys-tems. However, in several real world problems a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, if some features describe parameters varying within a period of time (which corresponds to the case duration), and are therefore collected in the form of time series; (2) at the history level, if the evolution of the system can be reconstructed by retrieving temporally related cases. In this paper, we describe a framework for case representation and retrieval able to take into account the temporal dimension, and meant to be used in any time dependent domain. In particular, to support case retrieval, we provide an analysis of similarity-based time series retrieval techniques; to support history retrieval, we introduce possible ways to summarize the case content, together with the corresponding strategies for identifying similar instances in the knowledge base. A concrete ap-plication of our framework is represented by the system RHENE, which is briefly sketched here, and extensively described in [20].