115 research outputs found
Genetic diversity of carotenoid-rich bananas evaluated by Diversity Arrays Technology (DArT)
The aim of this work was to evaluate the carotenoid content and genetic variability of banana accessions from the Musa germplasm collection held at Embrapa Cassava and Tropical Fruits, Brazil. Forty-two samples were analyzed, including 21 diploids, 19 triploids and two tetraploids. The carotenoid content was analyzed spectrophotometrically and genetic variability was estimated using 653 DArT markers. The average carotenoid content was 4.73 μg.g -1 , and ranged from 1.06 μg.g -1 for the triploid Nanica (Cavendish group) to 19.24 μg.g -1 for the triploid Saney. The diploids Modok Gier and NBA-14 and the triploid Saney had a carotenoid content that was, respectively, 7-fold, 6-fold and 9-fold greater than that of cultivars from the Cavendish group (2.19 μg.g -1). The mean similarity among the 42 accessions was 0.63 (range: 0.24 to 1.00). DArT analysis revealed extensive genetic variability in accessions from the Embrapa Musa germplasm bank
The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity
Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio
Robot Learning with Task-Parameterized Generative Models
Task-parameterized models provide a representation of movement/behavior that can adapt to a set of task parameters describing the current situation encountered by the robot, such as location of objects or landmarks in its workspace. This paper gives an overview of the task-parameterized Gaussian mixture model (TP-GMM) introduced in previous publications, and introduces a number of extensions and ongoing challenges required to move the approach toward unconstrained environments. In particular, it discusses its generalization capability and the handling of movements with a high number of degrees of freedom. It then shows that the method is not restricted to movements in task space, but that it can also be exploited to handle constraints in joint space, including priority constraints
Insights into the Musa genome: Syntenic relationships to rice and between Musa species
<p>Abstract</p> <p>Background</p> <p><it>Musa </it>species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning <it>Musa </it>genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of <it>Musa </it>genomic sequence have been conducted. This study compares genomic sequence in two <it>Musa </it>species with orthologous regions in the rice genome.</p> <p>Results</p> <p>We produced 1.4 Mb of <it>Musa </it>sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for <it>Musa</it>-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the <it>Musa </it>lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from <it>M. acuminata </it>and <it>M. balbisiana </it>revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.</p> <p>Conclusion</p> <p>These results point to the utility of comparative analyses between distantly-related monocot species such as rice and <it>Musa </it>for improving our understanding of monocot genome evolution. Sequencing the genome of <it>M. acuminata </it>would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated <it>Musa </it>polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.</p
The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny
Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades – Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes
Review of the techniques used in motor‐cognitive human‐robot skill transfer
Abstract A conventional robot programming method extensively limits the reusability of skills in the developmental aspect. Engineers programme a robot in a targeted manner for the realisation of predefined skills. The low reusability of general‐purpose robot skills is mainly reflected in inability in novel and complex scenarios. Skill transfer aims to transfer human skills to general‐purpose manipulators or mobile robots to replicate human‐like behaviours. Skill transfer methods that are commonly used at present, such as learning from demonstrated (LfD) or imitation learning, endow the robot with the expert's low‐level motor and high‐level decision‐making ability, so that skills can be reproduced and generalised according to perceived context. The improvement of robot cognition usually relates to an improvement in the autonomous high‐level decision‐making ability. Based on the idea of establishing a generic or specialised robot skill library, robots are expected to autonomously reason about the needs for using skills and plan compound movements according to sensory input. In recent years, in this area, many successful studies have demonstrated their effectiveness. Herein, a detailed review is provided on the transferring techniques of skills, applications, advancements, and limitations, especially in the LfD. Future research directions are also suggested
- …