172,335 research outputs found

    Pion form factors with improved infrared factorization

    Get PDF
    We calculate electromagnetic pion form factors with an analytic model for αs(Q2)\alpha_{\rm s}(Q^2) which is infrared (IR) finite without invoking a ``freezing'' hypothesis. We show that for the asymptotic pion distribution amplitude, Fπ0γ∗γF_{\pi ^{0}\gamma ^{*}\gamma} agrees well with the data, whereas the IR-enhanced hard contribution to FπF_{\pi} and the soft (nonfactorizing) part can jointly account for the data.Comment: 12 pages; 3 figures as PS files (1 figure added); modified text; added references. To appear in Phys. Lett.

    Phonon-mediated electron spin phase diffusion in a quantum dot

    Full text link
    An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast to the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin precession and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal g-factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest electronic states. Prominent differences in the temperature and magnetic field dependence between the proposed mechanisms and the spin-flip transitions are expected to facilitate its experimental verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semiconductor quantum dots.Comment: 5 pages, 1 figur

    Off-diagonal magnetoimpedance in field-annealed Co-based amorphous ribbons

    Full text link
    The off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons was measured in the low-frequency range using a pick-up coil wound around the sample. The asymmetric two-peak behavior of the field dependence of the off-diagonal impedance was observed. The asymmetry is attributed to the formation of a hard magnetic crystalline phase at the ribbon surface. The experimental results are interpreted in terms of the surface impedance tensor. It is assumed that the ribbon consists of an inner amorphous region and surface crystalline layers. The coupling between the crystalline and amorphous phases is described through an effective bias field. A qualitative agreement between the calculated dependences and experimental data is demonstrated. The results obtained may be useful for development of weak magnetic-field sensors.Comment: 19 pages, 6 figure
    • …
    corecore