40 research outputs found
Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions
We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb
superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson
junctions with high critical current densities, large normal resistance times
area products, high quality factors, and very good spatial uniformity. For
these junctions a transition from 0- to \pi-coupling is observed for a
thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The
magnetic field dependence of the \pi-coupled junctions demonstrates good
spatial homogeneity of the tunneling barrier and ferromagnetic interlayer.
Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane
anisotropy and large saturation magnetization, indicating negligible dead
layers at the interfaces. A careful analysis of Fiske modes provides
information on the junction quality factor and the relevant damping mechanisms
up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at
low frequencies, the damping is dominated by the finite surface resistance of
the junction electrodes at high frequencies. High quality factors of up to 30
around 200 GHz have been achieved. Our analysis shows that the fabricated
junctions are promising for applications in superconducting quantum circuits or
quantum tunneling experiments.Comment: 15 pages, 9 figure
Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids
The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells
Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop
In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I
Comparative study of photodynamic properties of 13,15-N-cycloimide derivatives of chlorin p6
Comparative study of 13,15-[N-(2-hydroxyethyl)]cycloimide chlorin p6 (2), 13,15-(N-acetoxy)cycloimide chlorin p6 (3), 13,15-(N-hydroxy)cycloimide chlorin p6 methyl ester (4) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (5) together with the previously investigated 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (1) was performed. The dependence of the key photodynamic properties of 1-5 on the introduced substituents was analyzed. The photoinduced cell-killing activity of 4 is 100- and 280-fold higher than that of chlorin p6 and Photogem, respectively, as estimated on A549 human lung adenocarcinoma cells. The activity is reduced eight times in the order 4 > 5 > 1 > 2 > 3. The intracellular accumulation of 1-5 occurs in cytoplasm in a monomeric form bound to the lipids of cellular membranes. This form of 1, 2, 3, 4 and 5 is characterized by the high quantum yield of singlet oxygen generation, which depends on the introduced substituents, 0.66, 0.59, 0.35, 0.51 and 0.73, respectively. The photostability is two-fold less for 1 and four-fold less for 2, 3 and 5 than for 4. The rates of cellular uptake and efflux of 1-5 vary widely, thus providing the way to optimize the pharmacological properties of the photosensitizer (PS) using the respective substituents. Modifying the substituents, 1-5 were targeted to different cellular organelles. The enhanced accumulation in the Golgi apparatus and mitochondria complemented with diffuse staining of intracellular membranous structures is a property of 1-4. Compound 5 accumulates selectively in the lipid droplets and stains weakly perinuclear structures. Temperature-sensitive mechanisms of transport are responsible for the 1-4 uptake. Diffusion can play a role in the internalization of 5 but not of 1-4. Endocytosis via caveolae, clathrin-dependent and adenosine triphosphate-dependent pathways are not noticeably involved in the 1-5 internalization. Independently from their intracellular localization 1, 4 and 5 are highly efficient near-IR PS, which induce predominantly an apoptotic type of cell death under conditions providing ca 50% level of phototoxicity and necrosis at the 100% level of phototoxicity