438 research outputs found
Synthesis of New Series of Pyrazoline, and Study their Kinetics and Reaction Mechanism
A new series of novel pyrazoline compounds were synthesized by addition of thiosemicarbazide to the 2,6-dibenzylidenecyclohexanone (Chalcone) and its para substituted derivatives. This study was conducted for four purposes. Firstly, a series of five membered ring pyrazoline compounds were synthesized and the structure of all new products obtained are supported by spectral data (1H-NMR, 13CNMR, IR and UV-Vis.), and the effect of substituents were studied. Secondly, the reaction kinetics of the new synthesized compounds were studied to investigate the reaction mechanism pathway and order of the reaction; it was found that, the reaction undergoes via Claisen route of mechanism with first-order reaction. Thirdly, the thermodynamics of the reaction were studied, the rate of the reaction, Arrhenius parameters (A), and thermodynamic parameters for activation includes (free energies (Ea), entropies (ΔS#), and Gibbs free energy (ΔG#) were estimated. Finally, the compensation effect was also studied, and found the same pathway for all of the synthesized pyrazoline compounds
Radiation from a charge circulating inside a waveguide with dielectric filling
The emitted power of the radiation from a charged particle moving uniformly
on a circle inside a cylindrical waveguide is considered. The expressions for
the energy flux of the radiation passing through the waveguide cross-section
are derived for both TE and TM waves. The results of the numerical evaluation
are presented for the number of emitted quanta depending on the waveguide
radius, the radius of the charge rotation orbit and dielectric permittivity of
the filling medium. These results are compared with the corresponding
quantities for the synchrotron radiation in a homogeneous medium.Comment: 10 pages, Latex, four EPS figure
Statistical Mechanics of Semi-Supervised Clustering in Sparse Graphs
We theoretically study semi-supervised clustering in sparse graphs in the
presence of pairwise constraints on the cluster assignments of nodes. We focus
on bi-cluster graphs, and study the impact of semi-supervision for varying
constraint density and overlap between the clusters. Recent results for
unsupervised clustering in sparse graphs indicate that there is a critical
ratio of within-cluster and between-cluster connectivities below which clusters
cannot be recovered with better than random accuracy. The goal of this paper is
to examine the impact of pairwise constraints on the clustering accuracy. Our
results suggests that the addition of constraints does not provide automatic
improvement over the unsupervised case. When the density of the constraints is
sufficiently small, their only impact is to shift the detection threshold while
preserving the criticality. Conversely, if the density of (hard) constraints is
above the percolation threshold, the criticality is suppressed and the
detection threshold disappears.Comment: 8 pages, 4 figure
Le Chatelier principle in replicator dynamics
The Le Chatelier principle states that physical equilibria are not only
stable, but they also resist external perturbations via short-time
negative-feedback mechanisms: a perturbation induces processes tending to
diminish its results. The principle has deep roots, e.g., in thermodynamics it
is closely related to the second law and the positivity of the entropy
production. Here we study the applicability of the Le Chatelier principle to
evolutionary game theory, i.e., to perturbations of a Nash equilibrium within
the replicator dynamics. We show that the principle can be reformulated as a
majorization relation. This defines a stability notion that generalizes the
concept of evolutionary stability. We determine criteria for a Nash equilibrium
to satisfy the Le Chatelier principle and relate them to mutualistic
interactions (game-theoretical anticoordination) showing in which sense
mutualistic replicators can be more stable than (say) competing ones. There are
globally stable Nash equilibria, where the Le Chatelier principle is violated
even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium
can amplify small perturbations, though both this type of equilibria satisfy
the detailed balance condition.Comment: 12 pages, 3 figure
Recommended from our members
Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells.
Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments
Casimir effect for scalar fields under Robin boundary conditions on plates
We study the Casimir effect for scalar fields with general curvature coupling
subject to mixed boundary conditions at on one () and two () parallel plates at a distance
from each other. Making use of the generalized Abel-Plana
formula previously established by one of the authors \cite{Sahrev}, the Casimir
energy densities are obtained as functions of and of
,,, respectively. In the case of two parallel plates,
a decomposition of the total Casimir energy into volumic and superficial
contributions is provided. The possibility of finding a vanishing energy for
particular parameter choices is shown, and the existence of a minimum to the
surface part is also observed. We show that there is a region in the space of
parameters defining the boundary conditions in which the Casimir forces are
repulsive for small distances and attractive for large distances. This yields
to an interesting possibility for stabilizing the distance between the plates
by using the vacuum forces.Comment: 21 pages, 8 figures, consideration of the contribution from complex
eigenmodes added, possibility for the stabilization of the distance between
the plates is discussed; accepted for publication in J. Phys.
Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field
We report the first use of an extremely thin vapor cell (thickness ~ 400 nm)
to study the magnetic-field dependence of laser-induced-fluorescence excitation
spectra of alkali atoms. This thin cell allows for sub-Doppler resolution
without the complexity of atomic beam or laser cooling techniques. This
technique is used to study the laser-induced-fluorescence excitation spectra of
Rb in a 50 G magnetic field. At this field strength the electronic angular
momentum J and nuclear angular momentum I are only partially decoupled. As a
result of the mixing of wavefunctions of different hyperfine states, we observe
a nonlinear Zeeman effect for each sublevel, a substantial modification of the
transition probabilities between different magnetic sublevels, and the
appearance of transitions that are strictly forbidden in the absence of the
magnetic field. For the case of right- and left- handed circularly polarized
laser excitation, the fluorescence spectra differs qualitatively. Well
pronounced magnetic field induced circular dichroism is observed. These
observations are explained with a standard approach that describes the partial
decoupling of I and J states
Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy
Photodynamic inactivation of microorganisms known as antibacterial photodynamic therapy (APDT) is one of the most promising and innovative approaches for the destruction of pathogenic microorganisms. Among the photosensitizers (PSs), compounds based on cationic porphyrins/ metalloporphyrins are most successfully used to inactivate microorganisms. Series of meso-substituted cationic pyridylporphyrins and metalloporphyrins with various peripheral groups in the third and fourth positions of the pyrrole ring have been synthesized in Armenia. The aim of this work was to determine and test the most effective cationic porphyrins and metalloporphyrins with high photoactivity against Gram negative and Gram positive microorganisms. It was shown that the synthesized cationic pyridylporphyrins/metalloporphyrins exhibit a high degree of phototoxicity towards both types of bacteria, including the methicillin-resistant S. aureus strain. Zinc complexes of porphyrins are more phototoxic than metal-free porphyrin analogs. The effectiveness of these Zn-metalloporphyrins on bacteria is consistent with the level of singlet oxygen generation. It was found that the high antibacterial activity of the studied cationic porphyrins/metalloporphyrins depends on four factors: The presence in the porphyrin macrocycle of a positive charge (+4), a central metal atom (Zn2+) and hydrophobic peripheral functional groups as well as high values of quantum yields of singlet oxygen. The results indicate that meso-substituted cationic pyridylporphyrins/metalloporphyrins can find wider application in photoinactivation of bacteria than anionic or neutral PSs usually used in APD
Hypercharge and the Cosmological Baryon Asymmetry
Stringent bounds on baryon and lepton number violating interactions have been
derived from the requirement that such interactions, together with electroweak
instantons, do not destroy a cosmological baryon asymmetry produced at an
extremely high temperature in the big bang. While these bounds apply in
specific models, we find that they are generically evaded. In particular, the
only requirement for a theory to avoid these bounds is that it contain charged
particles which, during a certain cosmological epoch, carry a non-zero
hypercharge asymmetry. Hypercharge neutrality of the universe then dictates
that the remaining particles must carry a compensating hypercharge density,
which is necessarily shared amongst them so as to give a baryon asymmetry.
Hence the generation of a hypercharge density in a sector of the theory forces
the universe to have a baryon asymmetry.Comment: 12 pages plus 1 Postscript figure available upon request. LBL 3482
Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics
How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities
- …