13,437 research outputs found

    Visualizing Convolutional Networks for MRI-based Diagnosis of Alzheimer's Disease

    Full text link
    Visualizing and interpreting convolutional neural networks (CNNs) is an important task to increase trust in automatic medical decision making systems. In this study, we train a 3D CNN to detect Alzheimer's disease based on structural MRI scans of the brain. Then, we apply four different gradient-based and occlusion-based visualization methods that explain the network's classification decisions by highlighting relevant areas in the input image. We compare the methods qualitatively and quantitatively. We find that all four methods focus on brain regions known to be involved in Alzheimer's disease, such as inferior and middle temporal gyrus. While the occlusion-based methods focus more on specific regions, the gradient-based methods pick up distributed relevance patterns. Additionally, we find that the distribution of relevance varies across patients, with some having a stronger focus on the temporal lobe, whereas for others more cortical areas are relevant. In summary, we show that applying different visualization methods is important to understand the decisions of a CNN, a step that is crucial to increase clinical impact and trust in computer-based decision support systems.Comment: MLCN 201

    KLγν>νˉK_L \to \gamma \nu > \bar{\nu} decay beyond the standard model

    Full text link
    The decay KLγννˉK_L \to \gamma \nu \bar{\nu} is investigated beyond the standard model. Interestingly, the upper limit of the CP-conserving and CP-violating branching ratios of the decay, induced from the possible extensions of the standard model, would be larger than the corresponding branching ratios given in the standard model respectively, and it is expected that the CP-violating part could be enhanced

    Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles

    Get PDF
    As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions

    Chiral Perturbation Theory and U(3)_L\times U(3)_R Chiral Theory of Mesons

    Full text link
    We examine low energy limit of U(3)L×U(3)RU(3)_L\times U(3)_R chiral theory of mesons through integrating out fields of vector and axial-vector mesons. The effective lagrangian for pseudoscalar mesons at O(p4)O(p^4) has been obtained, and five low energy coupling constants Li(i=1,2,3,9,10)L_i(i=1,2,3,9,10) have been revealed. They are in good agreement with the results of CHPT's at μmρ\mu \sim m_\rho.Comment: 20 pages, Standard LaTex file, no finger

    Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem

    Get PDF
    Human activities and climate change are important factors that affect grassland ecosystems. A new optimization approach, the approach of conditional nonlinear optimal perturbation (CNOP) related to initial and parameter perturbations, is employed to explore the nonlinearly combined impacts of human activities and climate change on a grassland ecosystem using a theoretical grassland model. In our study, it is assumed that the initial perturbations and parameter perturbations are regarded as human activities and climate change, respectively. Numerical results indicate that the climate changes causing the maximum effect in the grassland ecosystem are different under disparate intensities of human activities. This implies the pattern of climate change is very critical to the maintenance or degradation of grassland ecosystem in light of high intensity of human activities and that the grassland ecosystem should be rationally managed when the moisture index decreases. The grassland ecosystem influenced by the nonlinear combination of human activities and climate change undergoes abrupt change, while the grassland ecosystem affected by other types of human activities and climate change fails to show the abrupt change under a certain range of perturbations with the theoretical model. The further numerical analyses also indicate that the growth of living biomass and the evaporation from soil surface shaded by the wilted biomass may be crucial factors contributing to the abrupt change of the grassland equilibrium state within the theoretical model

    Low Scale Non-universal, Non-anomalous U(1)'_F in a Minimal Supersymmetric Standard Model

    Full text link
    We propose a non-universal U(1)'_F symmetry combined with the Minimal Supersymmetric Standard Model. All anomaly cancellation conditions are satisfied without exotic fields other than three right-handed neutrinos. Because our model allows all three generations of chiral superfields to have different U(1)'_F charges, upon the breaking of the U(1)'_F symmetry at a low scale, realistic masses and mixing angles in both the quark and lepton sectors are obtained. In our model, neutrinos are predicted to be Dirac fermions and their mass ordering is of the inverted hierarchy type. The U(1)'_F charges of the chiral super-fields also naturally suppress the mu term and automatically forbid baryon number and lepton number violating operators. While all flavor-changing neutral current constraints in the down quark and charged lepton sectors can be satisfied, we find that constraint from D0-D0bar turns out to be much more stringent than the constraints from the precision electroweak data.Comment: 21 pages, 2 figures; v2: discussion on sparticle mass spectrum included, 27 pages, 2 figure

    Evidence for line nodes in the energy gap of the overdoped Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} from low-temperature specific heat measurements

    Full text link
    Low-temperature specific heat (SH) is measured on Ba(Fe1x_{1-x}Cox_{x})2_2As2_2 single crystals in a wide doping region under different magnetic fields. For the overdoped sample, we find the clear evidence for the presence of T2T^2 term in the data, which is absent both for the underdoped and optimal doped samples, suggesting the presence of line nodes in the energy gap of the overdoped samples. Moreover, the field induced electron specific heat coefficient Δγ(H)\Delta\gamma(H) increases more quickly with the field for the overdoped sample than the underdoped and optimal doped ones, giving another support to our arguments. Our results suggest that the superconducting gap(s) in the present system may have different structures strongly depending on the doping regions.Comment: 5 pages, 4 figure
    corecore