2,076 research outputs found

    A note on the effect of post-mortem maturation on colour of bovine Longissimus dorsi muscle

    Get PDF
    peer-reviewedFinancial support to P.G. Dunne was provided under the Walsh Fellowship programme of Teagasc.Fifteen heifers were housed and fed a concentrate diet while 54 counterparts grazed at pasture for 90 days at which stage six heifers from each group were slaughtered. The remaining animals in the pasture group were then housed and offered either: concentrate only; concentrate plus grass silage with silage accounting for either 20% or 50% of the total dry matter offered; or zero-grazed grass plus concentrate with grass accounting for 83% of the dry matter offered. Heifers (3/diet) were slaughtered 28, 56, 91 and 120 days thereafter. Colour characteristics of M. longissimus dorsi (LD) were measured at 48 h post mortem. The LD was then vacuum-packaged and stored at between 0 and 4 °C in darkness for 12 days, when colour characteristics were again measured. Maturation of LD resulted in meat that had higher redness values (‘a’ value; P<0.001) and a more intense red colour (higher ‘C’ value; P<0.001) at 14 days post mortem than at 2 days, regardless of diet/duration of feeding. Maturation also resulted in a brighter colour (higher ‘L’ value; P<0.001) but this difference was greatest when cattle were slaughtered the day-56 time point

    Roads and traffic authority of new south Wales v dederer: Negligence and the exuberance of youth

    Full text link
    This case note examines the decision of the High Court of Australia in Roads and Traffic Authority of New South Wales v Dederer, which marks the common law's continued departure from shared liability for tragic accidents into the realm of personal liability. The decision has particular significance for children and young people who may be held accountable for their reckless actions, notwithstanding the 'exuberance of youth'. In particular, the case note analyses the High Court's emphasis on obvious risks and personal responsibility and the Court's attempt to limit liability through a consideration of the plaintiff's conduct on questions of the scope of the duty of care and at the breach of duty enquiry, rather than confining it to the issue of the plaintiff's contributory negligence

    Bs→KℓνB_s \to K \ell \nu form factors from lattice QCD

    Get PDF
    We report the first lattice QCD calculation of the form factors for the standard model tree-level decay Bs→KℓνB_s\to K \ell\nu. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of ∣Vub∣|V_{ub}|. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between Bs→KτνB_s\to K\tau\nu and Bs→KμνB_s\to K\mu\nu. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of Bs→KB_s\to K form factors with those of the fictitious Bs→ηsB_s\to\eta_s decay. Our lattice simulations utilize NRQCD bb and HISQ light quarks on a subset of the MILC Collaboration's 2+12+1 asqtad gauge configurations, including two lattice spacings and a range of light quark masses.Comment: 24 pages, 21 figures; Ver. 2 matches published versio

    B→Dlν form factors at nonzero recoil and extraction of |Vcb|

    Get PDF
    We present a lattice QCD calculation of the B→Dlν semileptonic decay form factors f+(q2) and f0(q2) for the entire physical q2 range. Nonrelativistic QCD bottom quarks and highly improved staggered quark charm and light quarks are employed together with Nf=2+1 MILC gauge configurations. A joint fit to our lattice and BABAR experimental data allows an extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|. We also determine the phenomenologically interesting ratio R(D)=B(B→Dτντ)/B(B→Dlνl) (l=e,μ). We find |Vcb|B→Dexcl=0.0402(17)(13), where the first error consists of the lattice simulation errors and the experimental statistical error and the second error is the experimental systematic error. For the branching fraction ratio we find R(D)=0.300(8)

    Transport in time-dependent dynamical systems: Finite-time coherent sets

    Full text link
    We study the transport properties of nonautonomous chaotic dynamical systems over a finite time duration. We are particularly interested in those regions that remain coherent and relatively non-dispersive over finite periods of time, despite the chaotic nature of the system. We develop a novel probabilistic methodology based upon transfer operators that automatically detects maximally coherent sets. The approach is very simple to implement, requiring only singular vector computations of a matrix of transitions induced by the dynamics. We illustrate our new methodology on an idealized stratospheric flow and in two and three dimensional analyses of European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis data

    Improving the theoretical prediction for the Bs−BˉsB_s-\bar{B}_s width difference: matrix elements of next-to-leading order ΔB=2\Delta B=2 operators

    Full text link
    We present lattice QCD results for the matrix elements of R2R_2 and other dimension-7, ΔB=2\Delta B = 2 operators relevant for calculations of ΔΓs\Delta \Gamma_s, the Bs−BˉsB_s-\bar{B}_s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1+1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs\Delta \Gamma_s will be substantially reduced.Comment: 8 pages. To appear in the Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    B and Bs semileptonic decay form factors with NRQCD/HISQ quarks

    Full text link
    We discuss our ongoing effort to calculate form factors for several B and Bs semileptonic decays. We have recently completed the first unquenched calculation of the form factors for the rare decay B -> K ll. Extrapolated over the full kinematic range of q^2 via model-independent z expansion, these form factor results allow us to calculate several Standard Model observables. We compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make predictions elsewhere. We discuss preliminary results for Bs -> K l nu which, when combined with anticipated experimental results, will provide an alternative exclusive determination of |Vub|. We are exploring the possibility of using ratios of form factors for this decay with those for the unphysical decay Bs -> eta_s as a means of significantly reducing form factor errors. We are also studying B -> pi l nu, form factors for which are combined with experiment in the standard exclusive determination of |Vub|. Our simulations use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations.Comment: 7 pages, 5 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Bs→DsℓνB_s \to D_s \ell \nu Form Factors and the Fragmentation Fraction Ratio fs/fdf_s/f_d

    Get PDF
    We present a lattice quantum chromodynamics determination of the scalar and vector form factors for the Bs→DsℓνB_s \rightarrow D_s \ell \nu decay over the full physical range of momentum transfer. In conjunction with future experimental data, our results will provide a new method to extract ∣Vcb∣|V_{cb}|, which may elucidate the current tension between exclusive and inclusive determinations of this parameter. Combining the form factor results at non-zero recoil with recent HPQCD results for the B→DℓνB \rightarrow D \ell \nu form factors, we determine the ratios f0Bs→Ds(Mπ2)/f0B→D(MK2)=1.000(62)f^{B_s \rightarrow D_s}_0(M_\pi^2) / f^{B \rightarrow D}_0(M_K^2) = 1.000(62) and f0Bs→Ds(Mπ2)/f0B→D(Mπ2)=1.006(62)f^{B_s \rightarrow D_s}_0(M_\pi^2) / f^{B \rightarrow D}_0(M_\pi^2) = 1.006(62). These results give the fragmentation fraction ratios fs/fd=0.310(30)stat.(21)syst.(6)theor.(38)latt.f_s/f_d = 0.310(30)_{\mathrm{stat.}}(21)_{\mathrm{syst.}}(6)_{\mathrm{theor.}}(38)_{\mathrm{latt.}} and fs/fd=0.307(16)stat.(21)syst.(23)theor.(44)latt.f_s/f_d = 0.307(16)_{\mathrm{stat.}}(21)_{\mathrm{syst.}}(23)_{\mathrm{theor.}}(44)_{\mathrm{latt.}}, respectively. The fragmentation fraction ratio is an important ingredient in experimental determinations of BsB_s meson branching fractions at hadron colliders, in particular for the rare decay B(Bs→μ+μ−){\cal B}(B_s \rightarrow \mu^+ \mu^-). In addition to the form factor results, we make the first prediction of the branching fraction ratio R(Ds)=B(Bs→Dsτν)/B(Bs→Dsℓν)=0.301(6)R(D_s) = {\cal B}(B_s\to D_s\tau\nu)/{\cal B}(B_s\to D_s\ell\nu) = 0.301(6), where ℓ\ell is an electron or muon. Current experimental measurements of the corresponding ratio for the semileptonic decays of BB mesons disagree with Standard Model expectations at the level of nearly four standard deviations. Future experimental measurements of R(Ds)R(D_s) may help understand this discrepancy.Comment: 21 pages, 15 figure
    • …
    corecore