409 research outputs found

    The Cause of Photospheric and Helioseismic Responses to Solar Flares: High-Energy Electrons or Protons?

    Full text link
    Analysis of the hydrodynamic and helioseismic effects in the photosphere during the solar flare of July 23, 2002, observed by Michelson Doppler Imager (MDI) on SOHO, and high-energy images from RHESSI shows that these effects are closely associated with sources of the hard X-ray emission, and that there are no such effects in the centroid region of the flare gamma-ray emission. These results demonstrate that contrary to expectations the hydrodynamic and helioseismic responses (''sunquakes") are more likely to be caused by accelerated electrons than by high-energy protons. A series of multiple impulses of high-energy electrons forms a hydrodynamic source moving in the photosphere with a supersonic speed. The moving source plays a critical role in the formation of the anisotropic wave front of sunquakes.Comment: 13 pages, 5 figures, ApJL in pres

    Early surgical closure of a large ventricular septal defect: Influence on long-term growth

    Get PDF
    AbstractThe pre- and postoperative growth patterns or 52 otherwise normal infants undergoing primary surgical closure of a large ventricular septal defect before 7 months of age were reviewed. Serial measurements of weight, length and head circumference were compiled for all patients preoperatively and in 46 long-term survivors and were expressed as Z scores (in standard deviations from the mean for age and gender).By the time of surgery at a mean age of 0.33 year, the mean weight, length and head circumference Z scores of all 52 infants were −2.9, −0.9 and −0.6, respectively, and were all significantly below normal (p < 0.001). At a mean age of 5.7 years, the mean weight, length and head circumference Z scores of 35 patients of normal birth weight were normal or varied only marginally from those of the reference population (−0.4, −0.1 and +0.5, respectively: p < 0.02, p > 0.05 and p = 0.008, respectively) and did not differ significantly in any variable from those of 44 normal siblings. However, among 11 infants with a low birth weight, all three variables remained abnormal at long-term follow-up when compared with the reference population (−1.7, −1.7 and −0.9, respectively; p < 0.001 for each) and 22 normal siblings (p < 0.008). The difference between pre- and postoperative Z scores was highly significant (p ≤ 0.004) for all three variables in the normal birth weight group, but only a significant difference in weight Z scores emerged in the low birth weight group (p < 0.001). Catch-up growth in most cases was complete within 6 to 12 months after operation.Early surgical repair of a large ventricular septal defect results in near normal long-term growth in the majority of patients. Residual growth disturbances are usually due to extracardiac factors. The present results support a policy of early surgical intervention in infants with a large ventricular septal defect

    Radiation patterns of seismic surface waves from buried dipolar point sources in a flat stratified Earth

    Get PDF
    Explicit compact expressions were obtained for the far displacement field of Rayleigh and Love waves generated by force configurations which served to simulate shear-type faults with arbitrary dip and slip. The medium transfer functions for dipolar sources were computed for a Gutenberg flat continental earth model with 23 layers. These were then used to obtain universal radiation pattern charts for couple- and double-couple-type sources at various depths over the period range 50 to 350 sec. It was demonstrated by means of few typical examples that the radiation patterns of Rayleigh waves may depend strongly on the depth of the source, and unlike the fundamental Love mode may be rather sensitive to small variations in frequency. For a given source and frequency the radiation pattern may differ considerably from one mode to another

    Fast evaluation of source parameters from isolated surface-wave signals. Part I. Universal tables

    Get PDF
    Tables for spectral displacements of seismic surface waves from shear dislocations in flat multilayered earth models were prepared. Earth response functions for seven modes (R_(11), R_(21), R_(12), L_0, L_1, L_2, L_3) at six periods (300 sec, 250 sec, 200 sec, 150 sec, 100 sec, 50 sec) and three paths (continental, oceanic, shield) were calculated for the source-depth range of 10 to 600 km at intervals of 5 km until 200 km, and thereafter at intervals of 10 km. Ground motion is given in micron-seconds for the three fundamental shear dislocations, each of strength U_0dS = 10^3 (m × km^2) and a delta-function time-dependence. The tables provide the means for rapid evaluation of source parameters from spectral radiation patterns of amplitudes and initial phases

    Determination of source parameters of explosions and earthquakes by amplitude equalization of seismic surface waves: 1. Underground nuclear explosions

    Get PDF
    A method of determining the source parameters of explosions and earthquakes from the amplitude spectrums of seismic surface waves is described. The method, called amplitude equalization, involves the correction of the ground displacement spectrum for the propagation effect. This is accomplished by multiplying it numerically with the inverse of the frequency response of the layered medium. The result is the amplitude spectrum of the source function, which may be interpreted by itself or jointly with the initial phase spectrum to determine the source-time variation. The spectrums of the Rayleigh waves from underground nuclear explosions are compared and the source-time function is interpreted using the amplitude equalization method. The time variation of the pressure pulse at the boundary of the elastic zone is found to be of the form p(t) = P_0te^(−ηt), where η is a parameter which depends on the yield of the explosion and on the medium. For the events studied, the breadth of the pulse increased (η decreased) with the yield of the explosion

    Determination of source parameters by amplitude equalization of seismic surface waves: 2. Release of tectonic strain by underground nuclear explosions and mechanisms of earthquakes

    Get PDF
    The radiation patterns of Love and Rayleigh waves from three nuclear explosions (Hardhat, Haymaker, and Shoal) are studied to determine the nature of the asymmetry of radiation and the mechanism of Love wave generation. From a comparative study of different explosions it is reasoned that the Love waves are generated at the source of the explosion. The source function, represented as the superimposition of an isotropic dilatational component due to the explosion and a multipolar component due to the release of tectonic strain energy, is consistent with the observed radiation patterns and the amplitude spectrums. The amount of seismic energy due to the strain release is computed. In some cases (Haymaker and Shoal) it is found that this energy may be due to the relaxation of the pre-stressed medium by the explosion-formed cavity. In the case of Hardhat it is concluded that the explosion must have triggered some other strain release mechanism, such as an earthquake. The amplitude equalization method is applied to surface waves from an earthquake to determine the source parameters. From only the amplitude spectrums and radiation patterns of Love and Rayleigh waves, the source functions, source depth, strike and dip of the fault plane, and the rake of displacement are determined for the July 20, 1964, Fallon earthquake

    Self-Gravitating Strings In 2+1 Dimensions

    Full text link
    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Due to the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified worldsheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive endpoints, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end-masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. We discuss the possible causal structures of our spacetimes in other regimes. It is shown that the induced worldsheet Liouville mode obeys ({\it classically}) a differential equation, similar to the Liouville equation and reducing to it in the flat limit. A quadratic action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string, is discussed.Comment: 55 page

    Interaction potential in compact three-dimensional QED with mixed action

    Full text link
    We use a variational wave function to calculate the energy of the interaction between external charges in the compact Abelian gauge theory in 2+1 dimensions with mixed action. Our variational wave functions preserve the compact gauge invariance of the theory both in the vacuum and in the charged sectors. We find that a good estimate of the interaction energy is obtained only when we allow more variational parameters in the charged sector than in the vacuum sector. These extra parameters are the profile of an induced electric field. We find that the theory has a two-phase structure: When the charge-2 coupling is large and negative there is no mass gap in the theory and no confinement, while otherwise a mass gap is generated dynamically and the theory confines charges. The pure Wilson theory is in the confining phase.Comment: 22 pages, Latex -- final version, minor changes from first versio
    • …
    corecore