33 research outputs found
Screen house and field resistance of taro cultivars to taro leaf blight disease (Phytophtora colocasiae)
Article PurchasedIntroduction: Taro leaf blight disease cause by Phytophtora colocasiae has become an economic disease in Cocoyam growing regions of Cameroon.
Aims: To screen for resistance 10 improved and 4 local cultivars of taro against taro leaf blight disease.
Study Design: A randomized complete block design study.
Place of Study: Studies were conducted at the International Institute of Tropical Agriculture (IITA) Yaounde Nkolbisson from July 2013 to January 2014.
Methodology: Taro cultivars from tissue culture were planted in the screen house conditions and tested for virulence and pathogenicity with 4 isolates of Phythophthora colocasiae at spore density of 3Ă—104 spores /ml of distilled water. Plants were planted in the field to assess disease incidence and severity.
Results: The results obtained on the different taro cultivars, revealed that all the 4 isolates showed variable pathogenicity. They caused lesions on inoculated leaves. There was variability in pathogenicity based on the small lesion lengths produced on cultivars, these included BL/SM132 and Red petiole. Isolate 3 showed a stronger sensitivity to leaf collapse and defoliation irrespective of the cultivar tested. There was a significant difference (p = 0.05) in tissue collapse and leaf defoliation on exposure to the different fungal isolates. The result of field infection rates of P. colocasiae at 126 DAP-154 DAP on 10 improved and 4 local cultivars indicated that there was significant variability (p = 0.05) in incidence and disease severity, with high incidence and severity occurring at 154 DAP in all cultivars. Improved cultivar BL/SM132 showed no classic symptoms of
P. colocasiae and therefore it was resistant to Phytophthora colocasiae.
Conclusion: The results obtained on virulence and pathogenicity of Phythophthora colocasiae on the different taro cultivars revealed that all the 4 isolates showed variable pathogenicity. They caused lesions, on inoculated leaves. Isolate 3 showed a stronger sensitivity to leaf collapse and defoliation irrespective of the cultivar tested. The result of field infection rates of P. colocasiae at 126 DAP-154 DAP on 10 improved and 4 local cultivars indicated that there was a significant variability (p = 0.05) in disease incidence and severity, with high incidence and severity occurring at 154 DAP in all cultivars. Improved cultivar BL/SM132 showed no classic symptoms of P. colocasiae and therefore it was resistant to Phytophthora colocasiae as compared to all the other cultivars which showed high severity rates of infection of the disease and thus were susceptible to the
disease
Genetic Diversity of Enteric Viruses in Children under Five Years Old in Gabon
Enteric viruses are the leading cause of diarrhea in children globally. Identifying viral agents and understanding their genetic diversity could help to develop effective preventive measures. This study aimed to determine the detection rate and genetic diversity of four enteric viruses in Gabonese children aged below five years. Stool samples from children <5 years with (n = 177) and without (n = 67) diarrhea were collected from April 2018 to November 2019. Norovirus, astrovirus, sapovirus, and aichivirus A were identified using PCR techniques followed by sequencing and phylogenetic analyses. At least one viral agent was identified in 23.2% and 14.9% of the symptomatic and asymptomatic participants, respectively. Norovirus (14.7%) and astrovirus (7.3%) were the most prevalent in children with diarrhea, whereas in the healthy group norovirus (9%) followed by the first reported aichivirus A in Gabon (6%) were predominant. The predominant norovirus genogroup was GII, consisting mostly of genotype GII.P31-GII.4 Sydney. Phylogenetic analysis of the 3CD region of the aichivirus A genome revealed the presence of two genotypes (A and C) in the study cohort. Astrovirus and sapovirus showed a high diversity, with five different astrovirus genotypes and four sapovirus genotypes, respectively. Our findings give new insights into the circulation and genetic diversity of enteric viruses in Gabonese children.Peer Reviewe
Molecular surveillance and genetic divergence of rotavirus A antigenic epitopes in Gabonese children with acute gastroenteritis
Background
Rotavirus A (RVA) causes acute gastroenteritis in children <5 years of age in sub-Saharan Africa. In this study, we described the epidemiology and genetic diversity of RVA infecting Gabonese children and examined the antigenic variability of circulating strains in relation to available vaccine strains to maximize the public health benefits of introducing rotavirus vaccine through the Expanded Programme on Immunization (EPI) in Gabon.
Methods
Stool samples were collected consecutively between April 2018 and November 2019 from all hospitalized children <5 years with gastroenteritis and community controls without gastroenteritis. Children were tested for rotavirus A by quantitative RT-PCR and subsequently sequenced to identify circulating rotavirus A genotypes in the most vulnerable population. The VP7 and VP4 (VP8*) antigenic epitopes were mapped to homologs of vaccine strains to assess structural variability and potential impact on antigenicity.
Findings
Infections were mostly acquired during the dry season. Rotavirus A was detected in 98/177 (55%) hospitalized children with gastroenteritis and 14/67 (21%) of the control children. The most common RVA genotypes were G1 (18%), G3 (12%), G8 (18%), G9 (2%), G12 (25%), with G8 and G9 reported for the first time in Gabon. All were associated either with P[6] (31%) or P[8] (38%) genotypes. Several non-synonymous substitutions were observed in the antigenic epitopes of VP7 (positions 94 and 147) and VP8* (positions 89, 116, 146 and 150), which may modulate the elicited immune responses.
Interpretation
This study contributes to the epidemiological surveillance of rotavirus A required before the introduction of rotavirus vaccination in the EPI for Gabonese children.Peer Reviewe
Recommended from our members
Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells
The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.
The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells
Comparative genomics revealed adaptive admixture in Cryptosporidium hominis in Africa
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host–parasite coevolution
Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 1: Cysteine Residues and Glycans
Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates—both antibody-drug conjugates as well as constructs for in vivo imaging—has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope that this review fosters interest and enthusiasm for site-specific immunoconjugates within the nuclear medicine and molecular imaging communities
Diagnostic Techniques of Soil-Transmitted Helminths: Impact on Control Measures
Soil-transmitted helminth (STH) infections are common in the tropical and subtropical countries. The burden of disease is highest in endemic areas with limited access to good quality water supply and poor sanitary conditions. Major approaches to control and reduce morbidity caused by worm infections include the periodic deworming of pre-school and school-aged children with anthelminthic drugs. Population-based studies and individual patient management including interventional studies can only be successful when accurate diagnostic techniques are used. The lack of appropriate diagnostic tools providing accurate results concerning both infectious status and intensity of infection-as these two factors vary in regions of low infection intensities-is a major challenge. Currently, available techniques show limited sensitivity and specificity and as such, a combination of several techniques is usually used to diagnose the large variety of parasite species. The objective of this review was to describe the advantages and disadvantages of the different available techniques for the diagnosis of STH infections and to highlight their use in control programs